功能富集分析 | GO| KEGG

本文介绍了如何复现一篇科学文章中的数据分析过程,包括从GEO下载数据、处理批次效应、差异分析、WGCNA模块确定,以及功能富集(GO和KEGG)分析。在实际操作中遇到基因无交集的问题,通过调整参数和数据处理策略来解决,强调数据质量和标准化的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

我们《复现SCI文章系列教程》专栏现在是免费开放,推出这个专栏差不多半年的时间,但是由于个人的精力和时间有限,只更新了一部分。后续的更新太慢了。因此,最终考虑后还是免费开放吧,反正不是什么那么神秘的东西。原本就是一个套路的文章,此外,这篇文章也相对比较简单。在此章节以前,还有一个WGCNA的分析,你若需要可以看**WGCNA分析 | 全流程分析代码**

目前全部开放链接:

  1. SCI文章复现 | GEO文章套路,数据下载和批次效应处理
  2. 差异分析和PPI网路图绘制教程

原付费:复现SCI文章系列教程文章

  1. 订阅《复现SCI文章系列教程》须知
  2. 复现SCI文章系列 | 第一篇文章复现:1. 文章讨论与文章分析套路讲解
  3. 2.1 材料与方法 (IF 7.3)
  4. 2.2 数据集下载 (IF 7.3)
  5. 2.3 数据去重和标准化(附送去批次效应)
  6. 2.4 差异分析
  7. 2.5 加权基因共表达分析(WGCNA)
  8. 2.6 PPI网络分析

本期推文内容

2.7.1 章节总结

在前的教程中,我们已经获得差异基因(2.4 差异分析)和获得与纤维化相关的模块基因。此教程,我们做功能富集分析。但是,此数据问题依旧是很大的影响因素,严重影响后续的分析。

2.7.2 文章结果内容

  1. GO和KEGG富集分析结果
  2. 分析结果图

2.7.3 取交集

根据文章分析流程,将DEGs和WGNCA分析获得的结果去交集,获得的交集基因进行后续分析。

在差异分析中,我们获得600多个DEGs,在WGCNA分析中,与纤维化相关的模块为“yellow”

共有200多个基因。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杜的生信筆記

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值