Pytorch入门进行迁移学习实现自行车分类识别:模型迁移训练与效果评估

前言

在机器学习和深度学习领域,迁移学习是一种强大的技术,它允许我们将在大型数据集上训练好的模型应用于新的任务或数据集。在本文中,我们将探讨如何使用PyTorch框架和迁移学习技术来实现自行车的分类识别。

1、数据集准备

参考:上篇文章

2、加载预训练模型

PyTorch提供了许多预训练的CNN模型,这些模型在大规模数据集(如ImageNet)上已经训练过,可以直接用于我们的任务。以下是一个加载预训练ResNet模型的示例代码:

import torchvision.models as models
net = models.resnet101(pretrained=True)
net.fc.out_features =5

3. 微调模型

微调是迁移学习的一种常见方法,它涉及到在特定任务上继续训练预训练模型的部分或全部层 。以下是一个微调ResNet模型的示例代码:

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

for epoch in range(10):  # 多批次循环
    net.train()
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # 获取输入
        images, labels = data
        #print(images.shape)
        images, labels = images.to(device), labels.to(device)
        # 梯度置0
        optimizer.zero_grad()

        # 正向传播,反向传播,优化
        outputs = net(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # 打印状态信息
        running_loss += loss.item()
    running_loss /= len(trainloader)
    print("epoch ", epoch, running_loss)

4、加载训练好的模型并且进行评估

net.eval()
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

针对于每一类进行评估

class_num = len(classes)
class_correct = list(0. for i in range(class_num))
class_total = list(0. for i in range(class_num))
with torch.no_grad():
    for data in testloader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        c = (predicted == labels).squeeze()
        if ((c.numel())== 4):
            for i in range(4):
                label = labels[i]
                class_correct[label] += c[i].item()
                class_total[label] += 1



for i in range(class_num):
    print('Accuracy of %5s : %2d %%' % (
        classes[i], 100 * class_correct[i] / class_total[i]))

5、总结

通过使用PyTorch进行迁移学习,我们可以有效地利用预训练的CNN模型来实现单车的分类识别。这种方法不仅可以加速训练过程,还可以提高模型的准确率和泛化能力。希望本文能帮助你理解和应用迁移学习在单车分类识别中的实践

关注我的公众号auto_driver_ai(Ai fighting), 第一时间获取更新内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值