本博客主要介绍RCNN中的Bounding-box的回归问题,这个是RCNN定准确定位的关键。本文是转载自博客:Faster-RCNN详解,从中截取有关RCNN的bounding-box的回归部分。原博文详细介绍了RCNN,Fast-RCNN以及Faster-RCNN,感兴趣的可以去看一下。下面是内容:
1. 为什么要做Bounding-box regression?
图10 示例
如图10所示,绿色的框为飞机的Ground Truth,红色的框是提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5),那么这张图相当于没有正确的检测出飞机。如果我们能对红色的框进行微调,使得经过微调后的窗口跟Ground Truth更接近,这样岂不是定位会更准确。确实,Bounding-box regression 就是用来微调这个窗口的。
2. 回归/微调的对象是什么?
3. Bounding-box regression(边框回归)
那么经过何种变换才能从图11中的窗口P变为窗口呢?比较简单的思路就是:
注意:只有当Proposal和Ground Truth比较接近时(线性问题),我们才能将其作为训练样本训练我们的线性回归模型,否则会导致训练的回归模型不work(当Proposal跟GT离得较远,就是复杂的非线性问题了,此时用线性回归建模显然不合理)。这个也是G-CNN: an Iterative Grid Based Object Detector多次迭代实现目标准确定位的关键。
线性回归就是给定输入的特征向量X,学习一组参数W,使得经过线性回归后的值跟真实值Y(Ground Truth)非常接近。即。那么Bounding-box中我们的输入以及输出分别是什么呢?
输入:这个是什么?输入就是这四个数值吗?其实真正的输入是这个窗口对应的CNN特征,也就是R-CNN中的Pool5feature(特征向量)。(注:训练阶段输入还包括 Ground Truth,也就是下边提到的)
输出:需要进行的平移变换和尺度缩放,或者说是。我们的最终输出不应该是Ground Truth吗?是的,但是有了这四个变换我们就可以直接得到Ground Truth,这里还有个问题,根据上面4个公式我们可以知道,P经过,得到的并不是真实值G,而是预测值。
的确,这四个值应该是经过 Ground Truth 和Proposal计算得到的真正需要的平移量和尺度缩放。
这也就是R-CNN中的:
那么目标函数可以表示为是输入Proposal的特征向量,是要学习的参数(*表示,也就是每一个变换对应一个目标函数),是得到的预测值。我们要让预测值跟真实值差距最小,得到损失函数为:
函数优化目标为:
利用梯度下降法或者最小二乘法就可以得到。