(概率论与数理统计)ch02

  1. 随机变量:
    假如一个变量在数轴上的取值依赖于随机现象的基本结果,则称此变量为随机变量.

  2. 累计概率分布函数(分布函数): F ( x ) = P ( X ⩽ x ) F(x)=P(X\leqslant x) F(x)=P(Xx)

  3. 可列可加性公理:
    P ( ⋃ n = 1 ∞ A n ) = ∑ n = 1 ∞ P ( A n ) P(\bigcup_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}P(A_n) P(n=1An)=n=1P(An)

  4. 二项分布的期望: X ∼ b ( n , p ) X\sim b(n,p) Xb(n,p)
    E ( X ) = ∑ x = 0 n x C n x p x ( 1 − p ) n − x = n p E(X)=\sum_{x=0}^{n}xC_n^xp^x(1-p)^{n-x}=np E(X)=x=0nxCnxpx(1p)nx=np

  5. 泊松定理:在n重伯努利试验中,以 p n p_n pn表示在一次实验中成功发生的概率.且随着n增大, p n p_n pn在减小.若 n → ∞ n \rightarrow \infty n时, λ n = n p n → λ \lambda_n=np_n \rightarrow \lambda λn=npnλ, λ > 0 \lambda>0 λ>0.则出现x次成功的概率为
    C n x p n x ( 1 − p n ) n − x → λ x x ! e − λ C_n^xp^x_n(1-p_n)^{n-x} \rightarrow \frac{\lambda^x}{x!}e^{-\lambda} Cnxpnx(1pn)nxx!λxeλ
    证明:
    ( n x ) p n x ( 1 − p n ) n − x = n ( n − 1 ) ⋯ ( n − x + 1 ) x ! ( λ n n ) x ( 1 − λ n n ) n − x = λ n x x ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − x − 1 n ) ( 1 − λ n n ) n − x \begin{array}{l}\left(\begin{array}{l}n \\ x\end{array}\right) p_{n}^{x}\left(1-p_{n}\right)^{n-x} \\ =\frac{n(n-1) \cdots(n-x+1)}{x !}\left(\frac{\lambda_{n}}{n}\right)^{x}\left(1-\frac{\lambda_{n}}{n}\right)^{n-x} \\ =\frac{\lambda_{n}^{x}}{x !}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{x-1}{n}\right)\left(1-\frac{\lambda_{n}}{n}\right)^{n-x}\end{array} (nx)pnx(1pn)nx=x!n(n1)(nx+1)(nλn)x(1nλn)nx=x!λnx(1n1)(1n2)(1nx1)(1nλn)nx
    注意,又因为下面的极限成立
    lim ⁡ n → ∞ λ n = λ lim ⁡ n → ∞ ( 1 − λ n n ) n − x = e − λ \begin{array}{l}\lim _{n \rightarrow \infty} \lambda_{n}=\lambda \\ \lim _{n \rightarrow \infty}\left(1-\frac{\lambda_{n}}{n}\right)^{n-x}=e^{-\lambda}\end{array} limnλn=λlimn(1nλn)nx=eλ
    所以原式成立.值得注意的是,这个分布和二项分布不同之处在于, p n p_n pn是会变化的.它会取极限.

  6. 泊松分布:根据泊松定理可得 X ∼ P ( λ ) X\sim P(\lambda) XP(λ)
    ∑ x = 1 ∞ λ x x ! e − λ = e λ ∑ x = 1 ∞ λ x x ! = e − λ e λ = 1 \sum_{x=1}^{\infty}\frac{\lambda^x}{x!}e^{-\lambda}=e^{\lambda}\sum_{x=1}^{\infty}\frac{\lambda^x}{x!}=e^{-\lambda}e^{\lambda}=1 x=1x!λxeλ=eλx=1x!λx=eλeλ=1
    可见泊松定理推出的一个分布公式,实际上是一个概率分布.这个概率分布是一个典型的离散型分布.随机变量取值为所有非负整数.

  7. 泊松分布的期望:
    E ( X ) = ∑ x = 0 ∞ x ⋅ λ x x ! e − λ = λ e − λ ∑ x = 1 ∞ λ x − 1 ( x − 1 ) ! = λ \begin{aligned} E(X) &=\sum_{x=0}^{\infty} x \cdot \frac{\lambda^{x}}{x !} e^{-\lambda} \\ &=\lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1) !}=\lambda \end{aligned} E(X)=x=0xx!λxeλ=λeλx=1(x1)!λx1=λ

  8. 泊松分布,总与计数过程相关联,并且计数是在一定时间内或一定区域内,或特定单位内的前提下进行的.比如

    • 在一定时间内,电话总站接错电话的次数;

    • 在一定时间内, 在超市排队等候付款的顾客人数;

    • 在一定时间内,来到车站等候公共汽车的人数;

    • 在一定时间内, 某操作系统发生故障的次数;

    • 在一个稳定的团体内,活到100岁的人数;

    • 一匹布上,瑕疵点的个数;

    • 100页书上,错别字的个数;

    • 一个面包上,葡萄干的个数;

  9. 超几何分布:N个产品,其中M个次品.如果进行不放回抽样.那么如果抽n次,拿到次品数量的概率分布. h ( n , N , M ) h(n,N,M) h(n,N,M)
    P ( X = x ) = ( M x ) ( N − M n − x ) ( N n ) x = 0 , 1 , ⋯   , r \begin{aligned} P(X=x) &=\frac{\left(\begin{array}{l}M \\ x\end{array}\right)\left(\begin{array}{l}N-M \\ n-x\end{array}\right)}{\left(\begin{array}{l}N \\ n\end{array}\right)} \\ & x=0,1, \cdots, r \end{aligned} P(X=x)=(Nn)(Mx)(NMnx)x=0,1,,r
    其中 r = m i n ( n , M ) r=min(n,M) r=min(n,M),其中我们可以看到的是
    ∑ x = 0 r ( M x ) ( N − M n − x ) = ( N n ) \sum_{x=0}^{r}\left(\begin{array}{l}M \\ x\end{array}\right)\left(\begin{array}{c}N-M \\ n-x\end{array}\right)=\left(\begin{array}{l}N \\ n\end{array}\right) x=0r(Mx)(NMnx)=(Nn)
    由此可见 ∑ x = 0 r P ( X = x ) = 1 \sum_{x=0}^{r}P(X=x)=1 x=0rP(X=x)=1

  10. 连续随机变量的概率密度函数 p ( x ) ⩾ 0 p(x)\geqslant 0 p(x)0
    ∫ − ∞ + ∞ p ( x ) d x = 1 \int_{-\infty}^{+\infty}{p(x)dx}=1 +p(x)dx=1
    P ( a ⩽ X ⩽ b ) = ∫ a b p ( x ) d x P(a\leqslant X\leqslant b)=\int_{a}^{b}{p(x)dx} P(aXb)=abp(x)dx

  11. 均匀分布 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b)

  12. 指数分布 X ∼ E x p ( λ ) X\sim Exp(\lambda) XExp(λ)

    p ( x ) = { λ e − λ x , x ⩾ 0 0 , x < 0 p(x)=\left\{ \begin{aligned} \lambda e^{-\lambda x},x\geqslant 0\\ 0, x<0 \end{aligned} \right. p(x)={λeλx,x00,x<0 不少产品首次发生故障的时间T服从指数分布.

  13. 随机变量的分布函数
    F ( x ) = P ( X ⩽ x ) = ∫ − ∞ x p ( x ) d x F(x)=P(X\leqslant x)=\int_{-\infty}^{x}{p(x)dx} F(x)=P(Xx)=xp(x)dx

    • 均匀分布 F ( x ) = { 0 , x < a x − a b − a , a ⩽ x ⩽ b 1 , x > b F(x)=\left\{ \begin{aligned} 0&, x<a\\ \frac{x-a}{b-a}&,a\leqslant x\leqslant b\\ 1&,x>b \end{aligned} \right. F(x)=0baxa1,x<a,axb,x>b

    • 指数分布 F ( x ) = { 0 , x < 0 1 − e − λ x , x ⩾ 0 F(x)=\left\{ \begin{aligned} 0&, x<0\\ 1-e^{-\lambda x}&,x\geqslant 0 \end{aligned} \right. F(x)={01eλx,x<0,x0

  14. 连续随机变量分布函数的一些性质

    • F ( x ) F(x) F(x)是连续函数

    • P ( X = x ) = 0 P(X=x)=0 P(X=x)=0,零概率事件和不可能事件 Φ \varPhi Φ,是有差别的.0️零概率事件不全是不可能事件.同理必然事件的概率为1.但是概率为1的事件不全是必然事件.概率为1的事件实际上是几乎必然发生的事件.

    • P ( a ⩽ X ⩽ b ) = P ( a ⩽ X < b ) = P ( a < X ⩽ b ) = P ( a < X < b ) \left. \begin{aligned} P(a\leqslant X\leqslant b)&=P(a\leqslant X<b)\\ &=P(a<X\leqslant b)\\ &=P(a<X<b) \end{aligned} \right. P(aXb)=P(aX<b)=P(a<Xb)=P(a<X<b)

    • F ′ ( x ) = p ( x ) F^{'}(x)=p(x) F(x)=p(x)

  15. P ( x ; p 1 ( x ) = p 2 ( x ) ) = 1 P(x;p_1(x)=p_2(x))=1 P(x;p1(x)=p2(x))=1, 两个函数在概率论中成为几乎处处相等.比如
    p 1 ( x ) = { 1 b − a , a < x ⩽ b 0 ,  other  p_{1}(x)=\left\{\begin{array}{ll}\frac{1}{b-a}, & a<x \leqslant b \\ 0 & , \text { other }\end{array}\right. p1(x)={ba1,0a<xb, other 
    p 2 ( x ) = { 1 b − a , a < x < b 0 other , p_{2}(x)=\left\{\begin{array}{ll}\frac{1}{b-a}, & a<x<b \\ 0 & \text{other},\end{array}\right. p2(x)={ba1,0a<x<bother,

  16. 已知随即变量X的分布函数 F X ( x ) F_X(x) FX(x)和密度函数为 p X ( x ) p_X(x) pX(x),又设 Y = g ( x ) Y=g(x) Y=g(x),其中 g g g是严格单调的函数.且导数 g ′ ( ⋅ ) g^{'}(\cdot) g()存在.则 Y Y Y的概率密度函数为
    p Y ( y ) = p X ( h ( y ) ) ∣ h ′ ( y ) ∣ p_Y(y)=p_X(h(y))|h^{'}(y)| pY(y)=pX(h(y))h(y) h ( y ) h(y) h(y)
    y = g ( x ) y=g(x) y=g(x)的反函数, h ′ ( y ) h^{'}(y) h(y)是其导数.
    证明:
    F Y ( y ) = P ( Y ⩽ y ) = P ( g ( X ) ⩽ y ) = P ( X ⩽ h ( y ) ) = F X ( h ( y ) ) p Y ( y ) = p X ( h ( y ) ) ⋅ h ′ ( y ) \begin{aligned} F_{Y}(y) &=P(Y \leqslant y)=P(g(X) \leqslant y) \\ &=P(X \leqslant h(y))=F_{X}(h(y)) \\ p_{Y}(y) &=p_{X}(h(y)) \cdot h^{\prime}(y) \end{aligned} FY(y)pY(y)=P(Yy)=P(g(X)y)=P(Xh(y))=FX(h(y))=pX(h(y))h(y)

  17. 均匀分布的数学期望 E ( x ) = a + b 2 E(x)=\frac{a+b}{2} E(x)=2a+b

  18. 指数分布的期望 E ( X ) = 1 λ E(X)=\frac{1}{\lambda} E(X)=λ1

  19. 期望不存在的分布举例.柯西分布
    p ( x ) = 1 π ( 1 + x 2 ) , − ∞ < x < ∞ p(x)=\frac{1}{\pi (1+x^2)},-\infty<x<\infty p(x)=π(1+x2)1,<x< 因为积分,
    1 π ∫ − ∞ ∞ ∣ x ∣ 1 + x 2 d x \frac{1}{\pi}\int_{-\infty}^{\infty}{\frac{|x|}{1+x^2}dx} π11+x2xdx 无限.

  20. 正态分布
    p ( x ) = 1 2 π σ E x p ( − ( x − μ ) 2 2 σ 2 ) , − ∞ < x < ∞ p(x)=\frac{1}{\sqrt{2\pi}\sigma}Exp(-\frac{(x-\mu)^2}{2\sigma^2}), -\infty<x<\infty p(x)=2π σ1Exp(2σ2(xμ)2),<x<

  21. 正态分布的例子描述

    • 测量误差 ϵ \epsilon ϵ可以用正态分布描述.

    • 关头自动包装上重量y与标准重量m偏差 δ \delta δ服从正态分布.

    • 大批量制造的东西的尺寸和标准尺寸之差服从正态分布.

    • 同龄人的身高体重

    • 人的收入

    • 一个地区降雨量

    • 超市出售的鸡蛋重量

  22. 正态分布的应用:

    • 许多分布可用正态分布做近似.

    • 从正态分布中可以导出一些有用的分布. χ 2 \chi^2 χ2分布, t t t分布,以及 F F F分布.

  23. 正态分布的期望 E ( x ) = μ E(x)=\mu E(x)=μ

  24. 标准正态分布
    φ ( u ) = 1 2 π E x p ( − u 2 2 ) , − ∞ < u < ∞ . \varphi(u)=\frac{1}{\sqrt{2\pi}}Exp(-\frac{u^2}{2}),-\infty<u<\infty. φ(u)=2π 1Exp(2u2),<u<.
    Φ ( u ) = 1 2 π ∫ − ∞ u E x p ( − x 2 2 ) d x \Phi(u)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{u}{Exp(-\frac{x^2}{2})dx} Φ(u)=2π 1uExp(2x2)dx
    Φ ( − u ) = 1 − Φ ( u ) \Phi(-u)=1-\Phi(u) Φ(u)=1Φ(u)

  25. 正态分布的线性变换
    X ∼ N ( μ , σ 2 ) → U = X − μ σ X\sim N(\mu,\sigma^2) \rightarrow U=\frac{X-\mu}{\sigma} XN(μ,σ2)U=σXμ

  26. 正态分布的计算
    F ( a < X < b ) = Φ ( b − μ σ ) − Φ ( a − μ σ ) F(a<X<b)=\Phi(\frac{b-\mu}{\sigma})-\Phi(\frac{a-\mu}{\sigma}) F(a<X<b)=Φ(σbμ)Φ(σaμ)
    P ( X < b ) = Φ ( b − μ σ ) P(X<b)=\Phi(\frac{b-\mu}{\sigma}) P(X<b)=Φ(σbμ)
    P ( X > a ) = 1 − Φ ( a − μ σ ) P(X>a)=1-\Phi(\frac{a-\mu}{\sigma}) P(X>a)=1Φ(σaμ)

  27. 伽马函数如下所示
    Γ ( α ) = ∫ 0 ∞ x α − 1 e − x d x , α > 0 \Gamma(\alpha)=\int_{0}^{\infty}{x^{\alpha-1}e^{-x}dx},\alpha>0 Γ(α)=0xα1exdx,α>0

    • Γ ( 1 ) = 1 , Γ ( 1 2 ) = π \Gamma(1)=1,\Gamma(\frac{1}{2})=\sqrt{\pi} Γ(1)=1,Γ(21)=π

    • Γ ( α + 1 ) = α Γ ( α ) \Gamma(\alpha+1)=\alpha\Gamma(\alpha) Γ(α+1)=αΓ(α),对于自然数有 Γ ( n + 1 ) = n ! \Gamma(n+1)=n! Γ(n+1)=n!

    • ∫ 0 ∞ x α − 1 e − λ x d x = Γ ( α ) / λ α \int_{0}^{\infty}{x^{\alpha-1}e^{-\lambda x}dx}=\Gamma(\alpha)/\lambda^{\alpha} 0xα1eλxdx=Γ(α)/λα

  28. 伽马分布的概率密度函数, X ∼ G a ( α , λ ) X\sim Ga(\alpha,\lambda) XGa(α,λ) p ( x ) = { λ α Γ ( α ) x α − 1 e λ x , x > 0 0 , x ⩽ 0 p(x)=\left\{ \begin{aligned} &\frac{\lambda^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{\lambda x}&, x>0\\ &0&, x\leqslant 0 \end{aligned} \right. p(x)=Γ(α)λαxα1eλx0,x>0,x0 其中 α > 0 \alpha>0 α>0称为形状参数, λ > 0 \lambda>0 λ>0称为尺度函数.

  29. 伽马分布的数学期望为 E ( x ) = α λ E(x)=\frac{\alpha}{\lambda} E(x)=λα

  30. α = 1 \alpha=1 α=1的伽马分布就是指数分布.

  31. 指数分布 X ∼ E x p ( λ ) X\sim Exp(\lambda) XExp(λ)无记忆性 P ( X > s + t ∣ X > s ) = P ( X > t ) P(X>s+t|X>s)=P(X>t) P(X>s+tX>s)=P(X>t)

  32. λ = 1 2 \lambda=\frac{1}{2} λ=21,
    α = n 2 \alpha=\frac{n}{2} α=2n的伽马分布称为自由度为n的 χ 2 \chi^2 χ2分布. X ∼ χ 2 X\sim \chi^2 Xχ2
    E ( x ) = n = α λ E(x)=n=\frac{\alpha}{\lambda} E(x)=n=λα
    p ( x ) = 1 Γ ( n 2 ) 2 n / 2 x n 2 − 1 e − x 2 , x > 0 p(x)=\frac{1}{\Gamma(\frac{n}{2})2^{n/2}}x^{\frac{n}{2}-1}e^{-\frac{x}{2}},x>0 p(x)=Γ(2n)2n/21x2n1e2x,x>0

  33. 贝塔函数
    β ( a , b ) = ∫ 0 1 f d x x n − 1 ( 1 − x ) b − 1 d x , a > 0 , b > 0 \beta(a,b)=\int_{0}^{1}{fdx}x^{n-1}(1-x)^{b-1}dx,a>0,b>0 β(a,b)=01fdxxn1(1x)b1dx,a>0,b>0

    • β ( a , b ) = β ( b , a ) \beta(a,b)=\beta(b,a) β(a,b)=β(b,a)

    • β ( a , b ) = Γ ( a ) Γ ( b ) Γ ( a + b ) \beta(a,b)=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} β(a,b)=Γ(a+b)Γ(a)Γ(b)

  34. 贝塔分布的,概率密度函数, X ∼ B e ( a , b ) X\sim Be(a,b) XBe(a,b)
    p ( x ) = Γ ( a + b ) Γ ( a ) Γ ( b ) x a − 1 ( 1 − x ) b − 1 , 0 ⩽ x ⩽ 1 p(x)=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1},0\leqslant x\leqslant 1 p(x)=Γ(a)Γ(b)Γ(a+b)xa1(1x)b1,0x1
    其中a,b都是形状参数,且都为正.

    • 不合格率,服从它

    • 机器维修率

    • 打靶命中率

    • 市场占有率

    也就是说各种比率,的话.它们一般服从beta分布.

  35. beta分布的数学期望 E ( x ) = a a + b E(x)=\frac{a}{a+b} E(x)=a+ba

  36. a = b = 1 a=b=1 a=b=1的beta分布实际上就是 [ 0 , 1 ] [0,1] [0,1]上的均匀分布.

  37. 设随机变量X以及其函数g(X)的数学期望都存在.那么 E [ g ( X ) ] = { ∑ i g ( x i ) p ( x i ) ∫ − ∞ ∞ g ( x ) p ( x ) d x E[g(X)]=\left\{ \begin{aligned} \sum_ig(x_i)p(x_i)\\ \int_{-\infty}^{\infty}{g(x)p(x)dx} \end{aligned} \right. E[g(X)]=ig(xi)p(xi)g(x)p(x)dx

  38. E [ c g ( X ) ] = c E [ g ( X ) ] E[cg(X)]=cE[g(X)] E[cg(X)]=cE[g(X)]

  39. E [ g ( X ) ± h ( X ) ] = E [ g ( X ) ] ± E [ h ( X ) ] E[g(X)\pm h(X)]=E[g(X)]\pm E[h(X)] E[g(X)±h(X)]=E[g(X)]±E[h(X)]

  40. E [ c ] = c E[c]=c E[c]=c

  41. 方差的定义 V a r [ X ] = E [ X − E ( X ) ] 2 Var[X]=E[X-E(X)]^2 Var[X]=E[XE(X)]2,标准差 V a r [ X ] \sqrt{Var[X]} Var[X]

  42. V a r [ c ] = 0 Var[c]=0 Var[c]=0

  43. V a r [ a X + b ] = a 2 V a r [ X ] Var[aX+b]=a^2Var[X] Var[aX+b]=a2Var[X]

  44. V a r [ X ] = E ( X 2 ) − E [ X ] 2 Var[X]=E(X^2)-E[X]^2 Var[X]=E(X2)E[X]2

  45. 二项分布 b ( n , p ) b(n,p) b(n,p)的方差为 n p ( 1 − p ) np(1-p) np(1p)

  46. 均匀分布的方差为 ( b − a ) 2 / 12 (b-a)^2/12 (ba)2/12

  47. 伽马分布的方差为 α / λ 2 \alpha/\lambda^2 α/λ2

    • α = 1 \alpha=1 α=1, Y ∼ E x p ( λ ) , E ( Y ) = λ − 1 , V a r [ Y ] = λ − 2 , σ [ X ] = − λ Y\sim Exp(\lambda),E(Y)=\lambda^{-1},Var[Y]=\lambda^{-2},\sigma[X]=^{-\lambda} YExp(λ),E(Y)=λ1,Var[Y]=λ2,σ[X]=λ

    • α = n 2 , λ = 1 2 \alpha=\frac{n}{2},\lambda=\frac{1}{2} α=2n,λ=21, Z ∼ χ 2 ( n ) Z\sim \chi^2(n) Zχ2(n),
      E [ Z ] = n , V a r [ Z ] = 2 n E[Z]=n,Var[Z]=2n E[Z]=n,Var[Z]=2n

  48. 切比雪夫不等式
    P ( ∣ X − E [ X ] ∣ ⩾ ϵ ) ⩽ V a r [ X ] ϵ 2 P(|X-E[X]|\geqslant \epsilon)\leqslant \frac{Var[X]}{\epsilon^2} P(XE[X]ϵ)ϵ2Var[X]

    • 这个不等式对于连续或者离散的都成立.

    • 这个等式是描述概率曲线两端的和小于某个值.

    在这里插入图片描述

  49. 方差为0的随机斌量X必几乎处处为常数.这个常数就是其期望 E ( X ) E(X) E(X),这个定理亦可表示为:若 V a r [ X ] = 0 , Var[X]=0, Var[X]=0, P ( X = E [ X ] ) = 1 P(X=E[X])=1 P(X=E[X])=1

  50. 贝努力大数定律:
    X n X_n Xn是n重贝努力试验中事件A发生的次数.又设事件A发生的概率 P ( A ) = p P(A)=p P(A)=p,则对任意的 ϵ > 0 \epsilon>0 ϵ>0,有
    lim ⁡ n → 0 P ( ∣ X n n − p ∣ ⩾ ϵ ) = 0 \lim_{n\rightarrow 0}P(|\frac{X_n}{n}-p|\geqslant \epsilon)=0 n0limP(nXnpϵ)=0
    这个就是弱大数定理.偏差几乎处处为0,但是不代表就不存在偏差.

  51. 矩,c为常数,k为正整数.则 E ( X − c ) k E(X-c)^k E(Xc)k称为X分布关于c的k阶矩.

    • c = 0 c=0 c=0,则 E [ X ] k E[X]^k E[X]k称为X分布的k阶原点矩.记作 μ k \mu_k μk;

    • c = E [ X ] c=E[X] c=E[X],则 E [ X − E [ X ] ] k E[X-E[X]]^k E[XE[X]]k,称为X分布的k阶中心矩.记为 υ k \upsilon_k υk

    • 一阶原点矩就是期望,二阶中心距就是方差.

    • 中心距和原点矩之间的关系
      υ k = ∑ i = 1 k C k i μ i ( − μ 1 ) k − i \upsilon_k=\sum_{i=1}^{k}C_k^i\mu_i(-\mu_1)^{k-i} υk=i=1kCkiμi(μ1)ki

  52. 变异系数
    C υ = υ 2 μ 1 = V a r [ X ] E [ X ] C_{\upsilon}=\frac{\sqrt{\upsilon_2}}{\mu_1}=\frac{\sqrt{Var[X]}}{E[X]} Cυ=μ1υ2 =E[X]Var[X]

    变异系数,可以用来衡量从北京到上海的某些测量结果 E [ X ] = 1464 ( k i l o m e t e r ) , σ ( X ) = 500 ( m e t e r ) , C υ = 0.00034 E[X]=1464(kilometer), \sigma(X)=500(meter), C_{\upsilon}=0.00034 E[X]=1464(kilometer),σ(X)=500(meter),Cυ=0.00034,还有你测量100m的参数, E [ Y ] = 100 m , σ [ Y ] = 0.05 m , C υ − 0.0005 E[Y]=100m, \sigma[Y]=0.05m, C_{\upsilon}-0.0005 E[Y]=100m,σ[Y]=0.05m,Cυ0.0005,由此可见还是前者更为精确.

  53. 偏度
    β 1 = υ 3 ( υ 2 ) 3 / 2 = E [ X − E [ X ] ] 3 [ E [ X − E X ] 2 ] 3 / 2 \beta_1=\frac{\upsilon_3}{(\upsilon_2)^{3/2}}=\frac{E[X-E[X]]^3}{[E[X-EX]^2]^{3/2}} β1=(υ2)3/2υ3=[E[XEX]2]3/2E[XE[X]]3

    在这里插入图片描述

    正态分布的三阶中心距 υ 3 = 0 → β 1 = 0 \upsilon_3=0 \rightarrow \beta_1=0 υ3=0β1=0.

  54. 峰度 β 2 = υ 4 υ 2 2 \beta_2=\frac{\upsilon_4}{\upsilon_2^2} β2=υ22υ4

    • 实际上 β 2 \beta_2 β2是任一标准化变量与标准化正态分布的四节远点矩之差.

    • 峰度刻画的是图像和标准正态分布的图像比.是否更尖或者更平.

    • β 2 > 0 \beta_2>0 β2>0,更尖.

    • β 2 < 0 \beta_2<0 β2<0,更为平坦.

  55. 中位数 F ( x 0.5 ) = ∫ − ∞ x 0.5 p ( x ) d x = 0.5 F(x_{0.5})=\int_{-\infty}^{x_{0.5}}{p(x)dx}=0.5 F(x0.5)=x0.5p(x)dx=0.5
    也就是图像在 x 0.5 x_{0.5} x0.5右边的概率和等于右边的概率和.

    • 中位数一定存在,但是期望却不一定.

    • 分布对称时,对称中心就是中位数.

  56. 分位数
    F ( x α ) = ∫ − ∞ x α p ( x ) d x = α , 0 < α < 1 F(x_{\alpha})=\int_{-\infty}^{x_{\alpha}}{p(x)dx}=\alpha,0<\alpha<1 F(xα)=xαp(x)dx=α,0<α<1
    下侧分位数
    1 − F ( x α ′ ) = ∫ x α ′ ∞ p ( x ) d x = α 1-F(x^{'}_{\alpha})=\int_{x^{'}_{\alpha}}^{\infty}{p(x)dx}=\alpha 1F(xα)=xαp(x)dx=α

  57. 众数,离散时,代表发生次数最多的事件.连续时,代表概率曲线的最大值
    众数用 M o d ( X ) Mod(X) Mod(X)表示.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值