克莱蒙法则简要证明

UTF8gbsn

克莱蒙法则:对于形如 ( a 11 a 12 ⋯ a 1 n a 21 a 21 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) ( x 1 x 2 ⋮ x n ) = ( b 1 b 2 ⋮ b n ) \left( \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{21} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right)\left( \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right)=\left( \begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_n \end{array} \right) a11a21an1a12a21an2a1na2nannx1x2xn=b1b2bn 的线性方程组。如果系数矩阵 A A A可逆。则其解为
x i = ( a 11 a 12 ⋯ a 1 , i − 1 b 1 a 1 , i + 1 ⋯ a 1 n a 21 a 22 ⋯ a 2 , i − 1 b 2 a 2 , i + 1 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n , i − 1 b n a n , i + 1 ⋯ a n n ) ∣ A ∣ x_i=\frac{\left( \begin{array}{cccccccc} a_{11} & a_{12} & \cdots & a_{1,i-1} & b_{1} & a_{1,i+1} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2,i-1} & b_{2} & a_{2,i+1} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots &a_{n,i-1} & b_{n} & a_{n,i+1} & \cdots & a_{nn} \end{array} \right)}{|A|} xi=Aa11a21an1a12a22an2a1,i1a2,i1an,i1b1b2bna1,i+1a2,i+1an,i+1a1na2nann

其中 A = ( a 11 a 12 ⋯ a 1 n a 21 a 21 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) A=\left( \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{21} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right) A=a11a21an1a12a21an2a1na2nann

proof.
v i = ( a i 1 a i 2 ⋮ a i n ) , b = ( b 1 b 2 ⋮ b n ) , A i = ( v 1 v 2 ⋯ v i − 1 b v i + 1 ⋯ v n ) \mathbf{v}_i=\left( \begin{array}{c} a_{i1} \\ a_{i2} \\ \vdots \\ a_{in} \end{array} \right),\mathbf{b}=\left( \begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_n \end{array} \right),A_i=\left( \begin{array}{cccccccc} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_{i-1} & \mathbf{b} & \mathbf{v}_{i+1} & \cdots & \mathbf{v}_n \end{array} \right) vi=ai1ai2ain,b=b1b2bn,Ai=(v1v2vi1bvi+1vn)

e 1 = ( 1 0 ⋮ 0 ) , e 2 = ( 0 1 ⋮ 0 ) , ⋯   , e n = ( 0 0 ⋮ 1 ) , x = ( x 1 x 2 ⋮ x n ) \mathbf{e}_1=\left( \begin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array} \right), \mathbf{e}_2=\left( \begin{array}{c} 0 \\ 1 \\ \vdots \\ 0 \end{array} \right),\cdots,\mathbf{e}_n=\left( \begin{array}{c} 0 \\ 0 \\ \vdots \\ 1 \end{array} \right),\mathbf{x}=\left( \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right) e1=100,e2=010,,en=001,x=x1x2xn X i = ( e 1 e 2 ⋯ e i − 1 x e i + 1 ⋯ e n ) X_i=\left( \begin{array}{cccccccc} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_{i-1} & \mathbf{x} & \mathbf{e}_{i+1} & \cdots & \mathbf{e}_{n} \end{array} \right) Xi=(e1e2ei1xei+1en)

显然可以得到如下等式,
X i = A − 1 A i → d e t ( X i ) = d e t ( A − 1 A i ) X_i=A^{-1}A_i\rightarrow det(X_{i})=det(A^{-1}A_{i}) Xi=A1Aidet(Xi)=det(A1Ai) 又因为
d e t ( X i ) = x i = d e t ( A − 1 ) d e t ( A i ) = d e t ( A i ) d e t ( A ) det(X_{i})=x_{i}=det(A^{-1})det(A_{i})=\frac{det(A_{i})}{det(A)} det(Xi)=xi=det(A1)det(Ai)=det(A)det(Ai)
于是克莱蒙法则得证。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值