首先大家想象一个场景:
假设你的导师安排了文献阅读的任务,一个月阅读30篇英文文献,然后导师给你制定一个阅读计划。制定阅读计划有以下两种方式:
方式一:
根据你现在完成的量与目标工作量之间的差距制定阅读计划,差距越大工作量越大,导师仅仅关心还剩下多少文献没有读,而不关心你自身阅读文献的能力,这样制定的阅读计划是不太合理的,导致的结果可能是你不干了、三天打鱼两天晒网或者任务没有完成。
方式二:
导师很了解你的能力,知道你当前完成的阅读量,预测你一个星期的阅读量并为你制定出一个星期的阅读计划,但是仅仅将第一天的工作计划给你,然后根据你第一天的阅读完成情况继续为你制定下一个七天的阅读计划,但是每次制定七天的阅读计划只使用第一天的阅读计划,无疑浪费了导师的宝贵时间和精力,所以就降低了导师的任务量,仅仅为你制定五天的工作计划,但是依然预测你七天的工作量(第六天和第七天按照第五天的计划进行)。
下面从控制的角度来进行分析:
方式一(PID):
根据你现在完成的量与目标工作量之间的差距制定阅读计划,差距越大工作量越大,导师仅仅关心还剩下多少文献没有读(误差),而不关心你自身阅读文献的能力(被控对象模型),这样制定的阅读计划(控制量)是不太合理的,导致的结果可能是你不干了(系统发散)、三天打鱼两天晒网(震荡)或者任务没有完成(存在稳态误差)。
方式二(MPC):
导师很了解你的能力(被控对象模型),知道你当前完成的阅读量(状态反馈),预测你一个星期的阅读量(预测时域)并为你制定出一个星期的阅读计划(控制时域),但是仅仅将第一天的工作计划给你(控制序列的第一个控制量),然后根据你第一天的阅读完成情况继续为你制定下一个七天的阅读计划(滚动优化),但是每次制定七天的阅读计划只使用第一天的阅读计划,无疑浪费了导师的宝贵时间和精力,所以就降低了导师的任务量,仅仅为你制定五天的工作计划,但是依然预测你七天的工作量(第六天和第七天按照第五天的计划进行)。
模型预测控制基本概念
预测模型:根据被控对象的历史信息和未来的输入,可以预测系统未来的输出。预测模型可以是状态方程或传递函数,对于稳定的线性系统,可以使阶跃响应或脉冲响应。
滚动优化:通过对某一性能指标的在线反复优化来确定最优的控制动作。这是模型预测控制区别于其他算法的最大的优势。
反馈校正:被控对象的实际输出用于修正预测结果,防止模型不匹配或环境干扰预测结果
在MPC中,控制时域是小于等于预测时域的,就相当于是导师为你制定5天的计划,即控制了你5天的阅读量,剩下两天不进行控制,然后来预测你7天的阅读量。
点击下方卡片,加入会员全年无限制学习后台(MPC各矩阵的底层逻辑、MPC纵向控制、模型验证、MPC自适应巡航控制、非线性系统如何线性化及MPC动力学跟踪任何轨迹、约束添加及新求解器的求解、轨迹规划、纵向规划等80个系列)会员专享爆品课程及资源,同时获得分佣资格,可赚回自己的学费!