1. 引言
校园暴力,作为一种严重影响学生身心健康的行为问题,已经成为全球范围内教育领域的重要关注点。随着社会的发展,传统的暴力防控方式逐渐无法满足快速发展的校园环境对安全保障的需求。因此,基于深度学习的自动化监控和预警系统成为了解决校园暴力问题的一种创新方式。
YOLO(You Only Look Once)系列模型,尤其是YOLOv8,凭借其在物体检测领域的显著优势,已经被广泛应用于实时监控、安防和行为分析等任务。YOLOv8结合其高效的目标检测能力,可以有效识别校园内可能发生暴力行为的关键事件。本文将详细介绍如何基于YOLOv8模型和UI界面,设计和实现一个“校园暴力行为预警系统”,该系统能实时识别校园监控视频中的暴力行为并发出预警。
2. 系统目标与挑战
2.1 系统目标
本系统的主要目标是通过YOLOv8进行校园暴力行为的识别与预警,具体功能包括:
- 暴力行为检测:通过YOLOv8检测视频中的暴力行为,如推搡、打斗等。
- 实时视频处理:通过UI界面展示实时视频流,检测到暴力行为时进行框选并标记。
- <