一、引言
随着深度学习技术的飞速发展,越来越多的领域开始采用人工智能(AI)技术进行自动化与智能化升级。农业作为人类生存的重要领域,正在逐步迈向智能农业时代。果实成熟度判断是水果种植过程中的一项重要任务,传统的手工检测方法不仅耗时费力,而且容易受到主观因素的影响,无法高效地判断果实的最佳采摘时机。
利用深度学习技术,尤其是目标检测算法,如YOLOv10,可以对水果的颜色、形状等特征进行精准的分析,从而实现果实成熟度的自动检测,进而帮助农民或农业机器人确定最佳采摘时机。本文将详细介绍如何使用YOLOv10模型结合UI界面,基于水果的颜色与形状特征实现自动化的果实成熟度判断系统。我们将提供数据集、代码实现、模型训练与测试的完整流程,以及如何通过UI界面展示检测结果。
二、项目背景与目标
2.1 项目背景
在农业生产中,果实的成熟度判断对于提高收成质量和减少浪费至关重要。果实的成熟度不仅与其颜色、形状有关,还与内部成分如糖分、酸度等因素相关。对于不同品种的水果,成熟度的表现形式可能有所不同,因此,采用计算机视觉技术和深度学习模型对果实进行精准判断,能极大提高生产效率与果实质量。
2.2 项目目标
本项目的目标是: