1. 项目背景与意义
在现代工业生产中,设备的正常运行对于保障生产效率和产品质量至关重要。传统的设备状态监控方式多依赖人工巡检,存在效率低、误判率高等问题。随着计算机视觉和深度学习技术的发展,利用图像识别技术对设备部件进行自动识别与状态监控成为可能。
本项目旨在构建一套基于YOLOv8的工业设备部件识别与状态监控系统,实现对设备关键部件的自动识别与状态判断,提升设备管理的智能化水平。
2. 系统架构概述
整个系统分为以下几个模块:
- 数据采集与标注模块:采集设备部件图像,并进行标注,生成用于训练的标准数据集。
- 模型训练与优化模块:基于YOLOv8模型进行训练,优化模型性能。
- 推理与识别模块:利用训练好的模型对新图像进行推理,实现设备部件的识别与状态判断。
- 图形用户界面(GUI)模块:提供用户友好的操作界面,支持图像导入、识别结果展示等功能。
系统架构图如下所示:
css
复制编辑
[数据采集与标注] → [模型训练与优化] → [推理与识别] → [图形用户界面]