1. 引言
随着新冠疫苗接种规模不断扩大,疫苗接种现场的人数管理和流量统计变得尤为重要。准确统计现场人数有助于合理分配接种资源、优化流程和保障安全。传统人工计数存在效率低、误差大的问题,基于计算机视觉的自动检测技术能够实时、准确地完成现场人数统计。
本项目结合YOLOv8深度学习目标检测模型及Python PyQt5图形界面技术,构建一个实用的疫苗接种现场人数检测与统计系统,实现摄像头实时视频分析、检测结果可视化和交互操作。
2. 任务定义及技术挑战
目标:
- 实时检测疫苗接种现场所有人员目标
- 统计人数并实时更新显示
- 支持不同场景光照、遮挡和人员密集度
主要技术挑战:
- 目标遮挡严重时的准确检测
- 多人员近距离重叠与分割
- 处理复杂背景和光照变化
- 保证检测实时性和界面交互体验
3. 公开数据集推荐
数据集名称 | 描述 | 下载地址/参考链接 |
---|---|---|
COCO 2017 | 通用目标检测数据集,含大量人体标注 |