如何构建出更强大灵活的深度学习模型?或许我们可以考虑一个先进的方法:多尺度卷积+注意力机制。
多尺度卷积先提供丰富的特征信息,注意力机制再从中筛选出关键信息,这样结合起来,不仅可以进一步提高模型的识别精度和效率,显著提升模型性能,还可以增强模型的可解释性。比如新型CNN架构MPARN,通过引入注意力机制,实现了最高99.49%的故障诊断准确率。
MPARN: multi-scale path attention residual network for fault diagnosis of rotating machines
方法:论文介绍了一种用于旋转机械故障诊断的多尺度卷积神经网络结构,称为多尺度路径注意力残差网络(MPARN)。这个结构通过结合多尺度卷积和注意力机制来提取不同时间尺度的特征,并增强特征的表示能力。
创新点:
-
提出了一种新型的卷积神经网络架构,通过多尺度扩张卷积层后采用路径注意力模块,为不同卷积路径提取的特征分配不同的权重,以此增强多尺度结构的特征表示能力。
-
在多尺度扩张卷积层之后引入了一种新的注意力机制,通过比较不同路径提取的通道之间的关系来计算每个卷积路径的权重,然后对通道进行加权,以突出重要路径的特征。
Multiscale attention networks for pavement defect detection
方法:论文提出了一种多尺度移动注意力网络(MANet)自动检测和识别路面缺陷,弥补传统手动方法的不足,以移动网络为骨干结合多尺度卷积与混合注意力机制,显著提高特征提取能力和缺陷识别准确性。
创新点:
-
引入多尺度卷积核替代传统的3×3卷积核,扩展网络的卷积感受野。
-
在网络中结合混合注意力机制,增强空间点的重要性和通道间依赖性特征。
-
针对样本不平衡问题,采用增强型焦点损失函数(EFL),提高了裂缝检测的准确性。
-
提出了一种新颖的端到端网络架构MANet,用于检测路面缺陷。
AGGN: Attention-based glioma grading network with multi-scale feature extraction and multi-modal information fusion
方法:作者结合了多尺度特征提取和注意力机制的方法,提高了模型在不同MRI模态下的特征提取能力和鲁棒性,以解决依赖手动标记数据的现有方法的不足,实现无需标签的有效胶质瘤分级。
创新点:
-
提出了AGGN模型,该模型在不依赖手动标记肿瘤掩码的情况下,依然能够实现优异的分级性能。
-
设计了双域注意力机制,能够同时考虑通道和空间信息,突出MRI特征图中的关键模态和位置。
-
通过多尺度特征提取模块和多模态信息融合模块,AGGN能够综合分析脑部MRI,提取具有强表征能力的区分性特征。
Multi-scale attention network for single image super-resolution
方法:论文提出了一种用于单图像超分辨率的多尺度注意力网络MAN。这个网络结合了传统的多尺度机制和新出现的大核注意力,特别是提出了多尺度大核注意力和门控空间注意力单元,广泛的实验验证了其优越性能。
创新点:
-
通过多尺度和门控机制改进大核注意力,能够在不同粒度水平上聚合全球和局部信息,避免潜在的阻塞伪影。
-
结合经典多尺度机制和新兴的大核注意力,优化了模型的性能和计算效率。
-
整合门控机制和空间注意力,去除不必要的线性层,聚合信息丰富的空间上下文。
-
结合MLKA和GSAU构建多尺度注意力网络,在超分辨率任务中取得了与SwinIR相当的性能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。