护理SCI
《Asian Nursing Research》2024年第18卷第4期最新目录共精选12篇论文。
该杂志是韩国护理科学学会的官方同行评审研究期刊,国人发表论文较多。2024年期刊影响因子为2.1。
01
目录翻译
02
知识拓展
目录中有可学习借鉴的两个模型,小白之家梳理了重点信息供大家了解,激发选题灵感。
1
Cox 客户健康行为交互模型(IMCHB)
论文来源:
《Effects of a Customized Diet Education Program Using a Mobile Instant Messenger for People Undergoing Peritoneal Dialysis: A Feasibility Test》
《使用移动即时通讯工具的定制饮食教育计划对接受腹膜透析者的影响:可行性测试》
理论模型:
Cox客户健康行为交互模型(Cox’s Interaction Model of Client Health Behavior,IMCHB)是一个以客户为中心的健康行为改变模型,它重点关注个人内在动机和客户-专业人员之间的互动在健康行为改变中的重要性。该模型指出,通过提供情感支持、健康信息、决策控制和专业/技术能力,可以有效地促进客户采取健康行为,改善健康结果。常用于慢性病管理、老年护理、康复护理等领域。
研究设计:
慢性肾脏病患者在腹膜透析过程中饮食管理常存在较多挑战,本文通过准实验研究设计,采用非等效对照组前后测试方法,利用IMCHB模型构建了一个包含情感支持、健康信息、决策控制和专业/技术能力元素的定制饮食教育计划,通过移动即时通讯工具为接受腹膜透析的患者提供为期五周的个性化饮食教育,以提高他们的饮食自我效能和自我护理遵从性,并监测其对生理指标的影响。
图1 为腹膜透析患者定制的饮食教育计划
2
特定情境理论模型
论文来源:
《Developing a Chain Mediation Model of Recurrence Risk Perception and Health Behavior Among Patients With Stroke: A Cross-sectional Study》
《开发中风患者复发风险感知和健康行为的链式中介模型:横断面研究》
研究概念:
复发风险感知是指中风患者对自己未来再次发生中风的可能性的个人评估。这种感知可能基于他们对中风的了解、个人经历、医患沟通以及社会和文化背景。
理论模型:
在中风患者康复和预防的领域,特定情境理论模型(ST模型)提供了一个多维度框架,这个框架强调了个体、环境和社会层面因素的相互作用。这个模型认为,中风患者的行为和康复效果不仅受到他们个人信念和能力的影响,还受到周围环境和社会结构的影响。通过ST模型,医疗专业人员和研究人员可以设计出更全面、更有针对性的干预措施。这些措施不仅关注患者的直接医疗需求,还包括改善他们的生活环境和社会支持网络,以促进长期的健康行为改变和更好的康复。
①个体层面:包括患者对中风的认识、自我效能感(即他们相信自己能够执行健康行为的程度)、以及他们对健康行为的态度和动机。
②环境层面:涉及患者生活的物理和社会环境,比如家庭支持、社区资源、医疗保健系统的可达性,以及这些因素如何促进或阻碍健康行为。
③社会层面:包括文化、政策和经济因素,这些因素定义了中风患者所处的更广泛的社会背景,并影响他们获取资源和支持的机会。
研究假设与设计:
本研究采用ST模型构建中风患者的复发风险感知与健康行为结果的链式中介模型。
在本研究中,输入包括个人因素和外部因素,包括社会支持、风险感知、自我效能感和对复发的担忧。核心变量是行为决策,结果是健康行为。研究假设这些个人和外部因素通过直接或间接影响行为决策过程来影响中风患者的健康行为。
图2 假设模型
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。