具身大模型必学基础之多模模态数据对齐-CrossFormer

CrossFormer 是一种新的深度学习架构,旨在处理不同“具身智能任务”的机器人数据,能够控制多种不同的机器人平台,如单臂和双臂操纵系统、轮式机器人、四旋翼飞行器和四足机器人等。该架构的核心创新点包括跨尺度嵌入层、长短距离注意力、动态位置保差、两阶段注意力层、分层编码器-解码器等。本文将基于这些核心创新点,详细介绍如何实现和使用 CrossFormer。

1. CrossFormer 架构概述

CrossFormer 作为一种跨任务的模型,能够处理来自多种类型的机器人平台的输入数据。这种架构利用多层次的注意力机制和嵌入层来捕捉复杂的跨尺度特征,并在多个任务之间进行知识共享。它不仅能够适应不同的机器人硬件,还能有效地执行诸如路径规划、物体抓取、飞行控制等任务。

关键特点:
  • 跨尺度嵌入层 (Crossscale Embedding Layer, CEL):用于从多种数据源(例如传感器数据、图像数据、动作指令等)中提取信息,并将其嵌入到同一空间中。
  • 长短距离注意力 (LongShort Distance Attention, LsDA):用于处理长短期依赖关系,优化任务中不同尺度的交互。
  • 动态位置保差 (Dynamic Position Bias, DPB):增强模型对于不同机器人平台位置和运动状态的感知能力。
  • 两阶段注意力层 (Two-Stage Attention Layer, TSA):通过两阶段的处理流程,提高模型对复杂任务的理解和执行能力。
  • 分层编码器-解码器 (Hierarchical Encoder-Decoder, HED):提高模型在多任务处理中的表现,通过分层方式处理不同难度级别的任务。
  • 维度分段嵌入 (Dimension-Segment-Wise Embedding, DsW):支持高维数据处理,适应不同任务数据维度的变化。

2. CrossFormer 模型架构详细解析

(1) 跨尺度嵌入层 (CEL)

功能:跨尺度嵌入层的主要目的是通过多种不同的数据流进行特征融合,使模型能够理解来自不同平台的输入。它能够处理不同的数据类型,如图像、传感器数据(IMU)、动作数据等。

1. 原理解释
1.多源数据统一表示
  • 不同来源的数据可能具有不同的分辨率、尺度、结构特性。例如:
  • 图像数据:二维矩阵表示,具有空间特性。
  • 传感器数据:时间序列,具有时间相关性。
  • 动作指令:离散的分类数据或连续值。
  • 跨尺度嵌入层的目标是将这些多样化的数据映射到统一的特征空间,形成通用的特征表达。
2.多尺度处理
  • 数据的特征可以存在于不同的尺度中,例如图像中的细节特征(小尺度)和全局轮廓(大尺度)。
  • 利用多尺度卷积,分别提取小尺度和大尺度的特征。
  • 多尺度卷积层后接多头注意力机制,以捕捉更复杂的跨模态依赖关系。
3.多头注意力机制
  • 对嵌入后的数据进行跨模态的依赖捕捉。
  • 不同的注意力头可以关注不同的特征子空间,进一步增强特征表达能力。
2. 实现步骤
1.数据输入:将不同来源的数据分别通过专属的嵌入模块处理,例如 CNN、RNN 或全连接层。
2.多尺度卷积:对每种数据的嵌入特征应用不同尺度的卷积核。
3.特征融合:将多尺度特征进行拼接或加权整合,得到跨尺度的统一特征表示。
4.多头注意力:利用注意力机制对整合后的特征进一步处理,捕捉特征之间的依赖关系。
3. 代码实现

以下代码是一个基于 PyTorch 的简单实现示例:

import torch  
import torch.nn as nn  
  
class CrossscaleEmbeddingLayer(nn.Module):  
    def \_\_init\_\_(self, input\_dims, embed\_dim, num\_heads):  
        super(CrossscaleEmbeddingLayer, self).\_\_init\_\_()  
  
        # 多尺度卷积核  
        self.conv\_small = nn.Conv2d(input\_dims, embed\_dim, kernel\_size=3, padding=1)  
        self.conv\_medium = nn.Conv2d(input\_dims, embed\_dim, kernel\_size=5, padding=2)  
        self.conv\_large = nn.Conv2d(input\_dims, embed\_dim, kernel\_size=7, padding=3)  
  
        # 多头注意力机制  
        self.multihead\_attn = nn.MultiheadAttention(embed\_dim, num\_heads)  
  
        # 最终嵌入整合  
        self.fc = nn.Linear(embed\_dim \* 3, embed\_dim)  
  
    def forward(self, x):  
        """  
        x: 输入特征 (batch\_size, channels, height, width)  
        """  
        # 多尺度卷积  
        small\_scale = self.conv\_small(x)  # 小尺度特征  
        medium\_scale = self.conv\_medium(x)  # 中尺度特征  
        large\_scale = self.conv\_large(x)  # 大尺度特征  
  
        # 拼接多尺度特征  
        features = torch.cat(\[small\_scale, medium\_scale, large\_scale\], dim=1)  # (batch\_size, embed\_dim\*3, H, W)  
  
        # 将特征展平并转换为注意力输入格式  
        batch\_size, channels, height, width = features.size()  
        features\_flat = features.view(batch\_size, channels, -1).permute(2, 0, 1)  # (seq\_len, batch\_size, embed\_dim\*3)  
  
        # 多头注意力  
        attn\_output, \_ = self.multihead\_attn(features\_flat, features\_flat, features\_flat)  
  
        # 投影到最终嵌入维度  
        output = self.fc(attn\_output)  # (seq\_len, batch\_size, embed\_dim)  
        return output.permute(1, 2, 0).view(batch\_size, -1, height, width)  # (batch\_size, embed\_dim, H, W)  
  
\# 示例输入  
input\_tensor = torch.randn(8, 3, 64, 64)  # 假设输入为 8 个样本,3 通道,64x64 图像  
model = CrossscaleEmbeddingLayer(input\_dims=3, embed\_dim=64, num\_heads=4)  
output = model(input\_tensor)  
  
print("输出特征形状:", output.shape)  # (8, 64, 64, 64)  
4. 核心步骤解析
1.卷积提取多尺度特征
使用不同卷积核(3x3, 5x5, 7x7)提取不同尺度的特征。
2.特征融合
通过torch.cat 将不同尺度的特征拼接在一起,形成丰富的多尺度表达。
3.多头注意力
将多尺度融合后的特征进一步处理,关注跨模态的长短期依赖关系。
5. 优点
  • 适配多模态数据:通过统一嵌入,将异构数据转化为统一的特征表示。
  • 捕捉多尺度信息:通过多尺度卷积,兼顾局部细节和全局上下文。
  • 增强依赖关系建模:利用多头注意力机制,建模不同特征之间的复杂关系。

该代码可以根据具体需求调整嵌入维度、卷积核大小和注意力头数,以适应不同应用场景。

(2) 长短距离注意力 (LsDA)

功能: LsDA 机制能够捕捉长短期依赖关系,从而在多尺度的输入中进行有效的信息传递,特别是在处理动态环境中的任务时尤为重要。

长短距离注意力 (LongShort Distance Attention, LsDA) 原理详细解释

1. 原理解释

长短距离注意力机制的目标是捕捉不同范围内的特征依赖关系,使模型能够在执行复杂任务时兼顾细节和全局信息:

1.长距离依赖

  • 用于建模全局上下文信息,特别适合涉及大范围或全局感知的任务。

  • 例如,路径规划需要机器人感知整个环境的障碍物和目标位置。

2.短距离依赖

  • 用于捕捉局部细节特征,适合需要精确操作的任务。

  • 例如,机器人抓取物体时,需要精确处理抓取点附近的局部特征。

3.实现方式

  • 局部注意力:限制注意力的作用范围,仅对输入特征的邻域进行建模(如窗口化的注意力机制)。

  • 全局注意力:对整个输入范围计算注意力,获得全局特征依赖。

4.融合机制

将局部和全局注意力的结果进行融合,可以通过简单的加权平均或堆叠实现,以形成兼具全局和局部信息的输出特征。

2. 实现步骤
1.输入特征
将输入特征映射为适合注意力计算的嵌入表示。
2.局部注意力
对输入特征进行分块(窗口化)处理,仅计算局部范围内的注意力。
3.全局注意力
使用标准的全局自注意力机制,计算所有输入特征之间的依赖。
4.特征融合
将局部和全局注意力的输出特征融合,形成最终输出。
3. 代码实现

以下是基于 PyTorch 的实现示例:

import torch  
import torch.nn as nn  
import torch.nn.functional as F  
  
class LongShortDistanceAttention(nn.Module):  
    def \_\_init\_\_(self, embed\_dim, num\_heads, window\_size):  
        super(LongShortDistanceAttention, self).\_\_init\_\_()  
  
        self.embed\_dim = embed\_dim  
        self.num\_heads = num\_heads  
        self.window\_size = window\_size  
  
        # 全局注意力层  
        self.global\_attn = nn.MultiheadAttention(embed\_dim, num\_heads)  
  
        # 局部注意力层(窗口化操作)  
        self.local\_attn = nn.MultiheadAttention(embed\_dim, num\_heads)  
  
        # 融合权重  
        self.fc\_fusion = nn.Linear(embed\_dim \* 2, embed\_dim)  
  
    def forward(self, x):  
        """  
        x: 输入特征 (batch\_size, seq\_len, embed\_dim)  
        """  
        batch\_size, seq\_len, embed\_dim = x.size()  
  
        # 全局注意力  
        x\_global = x.permute(1, 0, 2)  # 转换为 (seq\_len, batch\_size, embed\_dim)  
        global\_output, \_ = self.global\_attn(x\_global, x\_global, x\_global)  
        global\_output = global\_output.permute(1, 0, 2)  # 转换回 (batch\_size, seq\_len, embed\_dim)  
  
        # 局部注意力  
        local\_output = torch.zeros\_like(x)  
        for i in range(0, seq\_len, self.window\_size):  
            # 提取局部窗口  
            local\_window = x\[:, i:i+self.window\_size, :\]  
            local\_window = local\_window.permute(1, 0, 2)  # 转换为 (window\_size, batch\_size, embed\_dim)  
  
            # 计算局部注意力  
            local\_attn\_output, \_ = self.local\_attn(local\_window, local\_window, local\_window)  
            local\_attn\_output = local\_attn\_output.permute(1, 0, 2)  # 转换回 (batch\_size, window\_size, embed\_dim)  
  
            # 将结果放回对应的位置  
            local\_output\[:, i:i+self.window\_size, :\] = local\_attn\_output  
  
        # 融合局部和全局特征  
        combined\_output = torch.cat(\[global\_output, local\_output\], dim=-1)  # 拼接 (batch\_size, seq\_len, embed\_dim\*2)  
        fused\_output = self.fc\_fusion(combined\_output)  # 映射回原始嵌入维度  
  
        return fused\_output  
  
\# 示例输入  
input\_tensor = torch.randn(8, 100, 64)  # 假设输入为 8 个样本,序列长度为 100,嵌入维度为 64  
model = LongShortDistanceAttention(embed\_dim=64, num\_heads=4, window\_size=10)  
output = model(input\_tensor)  
  
print("输出特征形状:", output.shape)  # (8, 100, 64)  
4. 核心步骤解析
1.全局注意力
使用标准的nn.MultiheadAttention 对所有序列元素计算注意力,获取全局依赖。
2.局部注意力
  • 将输入序列分为固定大小的窗口,每个窗口内单独计算注意力。
  • 窗口化的局部注意力能够有效降低计算复杂度,同时保留邻域信息。
3.特征融合
拼接全局和局部特征,并通过全连接层融合到统一的特征表示中。
5. 优点
  • 捕捉全局依赖:全局注意力能够感知整体上下文信息,适用于全局决策任务。
  • 关注局部细节:局部注意力在窗口内处理细粒度特征,有助于细节敏感的任务。
  • 高效融合:通过特征融合机制,将全局和局部信息有机结合,实现兼顾全局和局部的特征表达。

该代码可以进一步优化,如动态调整窗口大小或对融合方式进行改进,以适应更复杂的任务需求。

(3) 动态位置保差 (DPB)

功能: 动态位置保差通过学习每个时间步内的空间偏差,增强模型对于机器人的运动状态的理解。它能够处理由于机器人在物理空间中移动而引起的局部坐标变化。

1. 原理解释

动态位置保差的目标是增强模型对空间位置特征和动态运动状态的感知能力。其核心思想是通过可动态调整的位置信息,帮助模型在不同的机器人平台和任务场景中保持对位置相关特征的敏感性。

机器人感知挑战

  • 不同机器人平台可能有不同的硬件配置、运动模式和位姿特点。

  • 相同任务在不同位置或运动状态下可能表现出截然不同的特征分布。

解决思路

  • 引入动态位置偏差(Dynamic Position Bias),在特征处理中动态调整位置信息的权重。

  • 偏差不仅仅是静态的(如常规相对位置编码),而是结合机器人实时状态动态生成,使得模型能够适应多变的任务场景。

2. 关键功能
1.增强空间感知能力
  • 在特征提取中引入动态位置信息,捕捉空间上的依赖关系。
  • 提高模型对空间相关任务(如导航、路径规划)的感知能力。
2.适应动态运动状态
考虑机器人运动状态(速度、加速度、转向等),动态调整注意力机制的偏置项,使其适应不同动态场景。
3.多平台、多环境适应性
可扩展性强,支持多种机器人平台,避免模型对特定硬件或环境的过拟合。
3. 实现机制
1.动态位置偏差生成
  • 使用一个可学习的映射函数,将机器人状态(如位置、速度、姿态等)转化为动态偏差。
  • 偏差可以通过可学习参数或嵌入模块实时生成。
2.偏差的融合
偏差在注意力机制中作为额外的加权项,作用于注意力分数(attention scores),动态调整不同位置的注意力权重。
3.任务适应性
动态偏差可以针对特定任务进行优化,如导航时突出全局位置信息,抓取时增强局部位置感知。
4. 实现代码示例

以下是基于 PyTorch 的简单实现示例:

import torch  
import torch.nn as nn  
  
class DynamicPositionBias(nn.Module):  
    def \_\_init\_\_(self, embed\_dim, state\_dim):  
        """  
        embed\_dim: 输入特征的嵌入维度  
        state\_dim: 机器人状态维度(如位置、速度、姿态等)  
        """  
        super(DynamicPositionBias, self).\_\_init\_\_()  
  
        # 动态偏差生成器  
        self.bias\_generator = nn.Sequential(  
            nn.Linear(state\_dim, embed\_dim),  
            nn.ReLU(),  
            nn.Linear(embed\_dim, embed\_dim)  
        )  
  
    def forward(self, x, robot\_state):  
        """  
        x: 输入特征 (batch\_size, seq\_len, embed\_dim)  
        robot\_state: 机器人状态 (batch\_size, state\_dim)  
        """  
        # 生成动态偏差  
        dynamic\_bias = self.bias\_generator(robot\_state)  # (batch\_size, embed\_dim)  
        dynamic\_bias = dynamic\_bias.unsqueeze(1)  # (batch\_size, 1, embed\_dim)  
  
        # 应用于输入特征  
        output = x + dynamic\_bias  # 动态偏差叠加到输入特征  
        return output  
  
\# 示例输入  
input\_tensor = torch.randn(8, 100, 64)  # (batch\_size, seq\_len, embed\_dim)  
robot\_state = torch.randn(8, 10)  # (batch\_size, state\_dim)  
  
model = DynamicPositionBias(embed\_dim=64, state\_dim=10)  
output = model(input\_tensor, robot\_state)  
  
print("输出特征形状:", output.shape)  # (8, 100, 64)  
5. 优点
1.适应多平台和多场景任务
  • 通过动态偏差调整,模型能在不同机器人平台或环境中表现出强适应性。
  • 例如,无人机飞行和地面机器人导航都能通过动态位置偏差增强特定场景的表现。
2.强化位置相关任务性能
对于路径规划、抓取和动态避障等任务,动态位置偏差有助于模型捕捉与位置强相关的特征。
3.灵活性强
可根据任务需求调整偏差生成机制,例如结合任务类型、传感器数据等扩展功能。

通过动态位置保差机制,CrossFormer 架构在多任务处理中的适应性和空间感知能力得到了显著提升。

(4) 两阶段注意力层 (TSA)

功能:TSA 分为两个阶段:第一阶段捕捉基础的局部特征,第二阶段进行全局信息的整合和优化。这种分阶段处理有助于提升模型的效率和准确性。

1. 核心目标

两阶段注意力层旨在通过分阶段处理的方式,提升模型对复杂任务的理解能力。其主要思路是先广泛捕捉全局信息,再聚焦于任务相关的细节,使注意力机制兼具全局感知能力细化处理能力

2. 原理与流程
第一阶段:全局特征捕捉
  • 目标:从输入数据中提取全局性的重要信息,确保关键特征不被忽略。
  • 实现
  • 通过标准自注意力机制,计算输入序列中所有位置之间的依赖关系。
  • 这一阶段注重广度,确保全局特征的完整性。
  • 应用场景:如路径规划任务,第一阶段会提取地图中全局障碍物的分布信息。
  • 优势:能够构建全局视图,为后续阶段提供全面的上下文支持。
第二阶段:任务特征细化
  • 目标:针对特定任务需求,筛选和优化与任务目标相关的特征。
  • 实现
  • 在第一阶段输出的基础上,结合任务的上下文信息(如任务描述或目标位置),计算更精细的注意力权重。
  • 通过引入任务条件嵌入,进一步引导注意力集中在任务相关的区域。
  • 应用场景:在抓取任务中,第二阶段会聚焦于目标物体的具体特征,忽略无关的背景信息。
  • 优势:通过细化的注意力分布,显著提升特定任务的执行质量。
3. 模块设计
输入数据
  • 特征序列:来自多源数据的统一嵌入(如图像特征、传感器数据)。
  • 任务条件:特定任务的描述信息或目标特征。
两阶段处理
1.第一阶段:初步注意力计算
  • 使用标准自注意力机制捕捉输入序列的全局依赖关系。
  • 输出特征矩阵保留全局上下文信息。
2.第二阶段:任务条件优化
  • 引入任务相关嵌入,将其与第一阶段输出特征结合。
  • 使用任务引导的条件注意力机制,筛选与任务相关的关键特征。
4. 实现代码示例

以下是基于 PyTorch 的两阶段注意力层实现:

import torch  
import torch.nn as nn  
  
class TwoStageAttentionLayer(nn.Module):  
    def \_\_init\_\_(self, embed\_dim, num\_heads, task\_dim):  
        """  
        embed\_dim: 输入特征的嵌入维度  
        num\_heads: 注意力机制的头数  
        task\_dim: 任务条件的嵌入维度  
        """  
        super(TwoStageAttentionLayer, self).\_\_init\_\_()  
  
        # 第一阶段:全局自注意力  
        self.stage1\_attention = nn.MultiheadAttention(embed\_dim, num\_heads)  
  
        # 第二阶段:任务引导注意力  
        self.task\_embedding = nn.Linear(task\_dim, embed\_dim)  # 将任务条件映射到嵌入空间  
        self.stage2\_attention = nn.MultiheadAttention(embed\_dim, num\_heads)  
  
    def forward(self, x, task\_context):  
        """  
        x: 输入特征 (batch\_size, seq\_len, embed\_dim)  
        task\_context: 任务条件 (batch\_size, task\_dim)  
        """  
        # 第一阶段:全局注意力  
        x\_stage1 = x.permute(1, 0, 2)  # 转换为 (seq\_len, batch\_size, embed\_dim)  
        stage1\_output, \_ = self.stage1\_attention(x\_stage1, x\_stage1, x\_stage1)  
        stage1\_output = stage1\_output.permute(1, 0, 2)  # 转回 (batch\_size, seq\_len, embed\_dim)  
  
        # 任务条件嵌入  
        task\_embed = self.task\_embedding(task\_context)  # (batch\_size, embed\_dim)  
        task\_embed = task\_embed.unsqueeze(1)  # (batch\_size, 1, embed\_dim)  
  
        # 第二阶段:任务引导注意力  
        x\_stage2 = stage1\_output + task\_embed  # 将任务条件引导到特征中  
        x\_stage2 = x\_stage2.permute(1, 0, 2)  # 转换为 (seq\_len, batch\_size, embed\_dim)  
        stage2\_output, \_ = self.stage2\_attention(x\_stage2, x\_stage2, x\_stage2)  
        stage2\_output = stage2\_output.permute(1, 0, 2)  # 转回 (batch\_size, seq\_len, embed\_dim)  
  
        return stage2\_output  
  
\# 示例输入  
input\_tensor = torch.randn(8, 100, 64)  # (batch\_size, seq\_len, embed\_dim)  
task\_context = torch.randn(8, 32)  # (batch\_size, task\_dim)  
  
model = TwoStageAttentionLayer(embed\_dim=64, num\_heads=4, task\_dim=32)  
output = model(input\_tensor, task\_context)  
  
print("输出特征形状:", output.shape)  # (8, 100, 64)  
5. 优势
1.分阶段处理,增强特征提取效果
  • 第一阶段关注全局上下文,确保全局信息的完整性。
  • 第二阶段聚焦任务相关特征,避免对无关信息的干扰。
2.任务引导的动态适应性
第二阶段结合任务条件信息,动态调整注意力分布,显著提升特定任务的性能。
3.适应多种复杂任务
如路径规划、抓取控制、避障等场景,都需要从全局和局部两方面处理特征。
6. 示例场景
1.导航任务
  • 第一阶段:提取地图的全局信息。
  • 第二阶段:根据目标位置,筛选相关路径特征。
2.物体抓取
  • 第一阶段:识别图像中的物体位置。
  • 第二阶段:根据目标物体信息,聚焦抓取区域特征。
3.动态避障
  • 第一阶段:感知环境中的障碍物分布。
  • 第二阶段:结合机器人运动方向,筛选与避障相关的关键特征。

通过两阶段注意力层,模型在复杂任务中能更好地整合全局信息和任务细节,大幅提升理解和决策能力。

(5) 分层编码器-解码器 (HED)

功能:分层编码器-解码器(HED)通过多层编码器和解码器模块,逐步提取并生成任务相关的高维特征。不同层的网络处理不同难度的任务,从而使得整个模型在多任务学习中表现更为优异。

1. 核心目标

分层编码器-解码器的设计思想是通过分层处理机制,将复杂任务分解为多层次的特征提取和合成任务,从而提高模型的泛化能力和效率。适用于多任务处理的场景,尤其是任务间存在显著差异或层次结构的情况。

2. 原理与流程
编码器部分
1.分层特征提取
  • 输入数据逐层处理,提取不同层次的特征。
  • 每层专注于某种特定类型的特征,例如低层捕捉局部细节,高层捕捉全局语义。
2.任务特定编码
各层可以根据任务类型进行专门优化,使每层特征对任务子集更敏感。
3.跨层交互
通过跨层连接(如跳跃连接)保留浅层信息,避免高层丢失关键细节。
解码器部分
1.逐层特征合成
  • 解码过程从高层向低层逐步融合特征,用于生成最终输出。
  • 低层特征提供局部细节,高层特征提供全局上下文。
2.任务动态加权
根据具体任务需求,动态调整各层特征的贡献权重,确保输出对任务目标的适应性。
3. 模块设计
输入
·多模态数据:例如图像、传感器信号、机器人状态等。
输出
·针对多任务的特定结果,例如路径规划结果、抓取策略等。
模型结构
1.分层编码器
  • 基于堆叠卷积、注意力模块或其他特征提取方法。
  • 各层输出特征逐步向深层传递。
2.分层解码器
  • 使用反卷积、注意力反向映射等方式逐层还原特征。
  • 结合多任务加权机制调整输出结果。
4. 实现代码示例

以下是基于 PyTorch 的简单分层编码器-解码器实现:

import torch  
import torch.nn as nn  
  
class HierarchicalEncoderDecoder(nn.Module):  
    def \_\_init\_\_(self, input\_dim, hidden\_dims, task\_dims):  
        """  
        input\_dim: 输入特征维度  
        hidden\_dims: 编码器的每层隐藏维度列表,例如 \[64, 128, 256\]  
        task\_dims: 解码器输出任务的特定维度列表,例如 \[32, 16\] 表示两个任务  
        """  
        super(HierarchicalEncoderDecoder, self).\_\_init\_\_()  
  
        # 构建分层编码器  
        self.encoder\_layers = nn.ModuleList(\[  
            nn.Linear(input\_dim if i == 0 else hidden\_dims\[i - 1\], dim)  
            for i, dim in enumerate(hidden\_dims)  
        \])  
        self.encoder\_activations = nn.ModuleList(\[nn.ReLU() for \_ in hidden\_dims\])  
  
        # 构建分层解码器  
        self.decoder\_layers = nn.ModuleList(\[  
            nn.Linear(hidden\_dims\[-1\] if i == 0 else task\_dims\[i - 1\], dim)  
            for i, dim in enumerate(task\_dims)  
        \])  
        self.decoder\_activations = nn.ModuleList(\[nn.Sigmoid() for \_ in task\_dims\])  
  
        # 跳跃连接  
        self.skip\_connections = nn.ModuleList(\[  
            nn.Linear(hidden\_dims\[i\], task\_dims\[-1\]) for i in range(len(hidden\_dims))  
        \])  
  
    def forward(self, x):  
        # 编码阶段  
        encoder\_outputs = \[\]  
        for layer, activation in zip(self.encoder\_layers, self.encoder\_activations):  
            x = activation(layer(x))  
            encoder\_outputs.append(x)  # 保存每层输出  
  
        # 解码阶段  
        output = encoder\_outputs\[-1\]  # 使用最后一层编码器输出初始化  
        task\_outputs = \[\]  
        for i, (layer, activation) in enumerate(zip(self.decoder\_layers, self.decoder\_activations)):  
            output = activation(layer(output))  
            task\_outputs.append(output)  
  
        # 跨层特征融合  
        for skip\_layer, encoder\_output in zip(self.skip\_connections, encoder\_outputs):  
            task\_outputs\[-1\] += skip\_layer(encoder\_output)  
  
        return task\_outputs  # 返回每个任务的输出  
  
\# 示例输入  
input\_tensor = torch.randn(8, 128)  # (batch\_size, input\_dim)  
  
\# 创建模型  
model = HierarchicalEncoderDecoder(input\_dim=128, hidden\_dims=\[64, 128, 256\], task\_dims=\[32, 16\])  
task\_outputs = model(input\_tensor)  
  
\# 打印每个任务的输出形状  
for i, output in enumerate(task\_outputs):  
    print(f"任务 {i+1} 输出形状: {output.shape}")  
5. 优势
1.高效特征分解与合成
编码器逐层提取特征,解码器逐层聚合,特征传递有序且高效。
2.多任务协同优化
编码过程中任务共享特征,解码时通过动态权重调整,确保每个任务的特定需求都能得到满足。
3.泛化能力强
分层机制支持不同任务间的层次化特征共享,提升了模型在多任务场景中的表现。

通过分层编码器-解码器的结构,模型能够在多任务处理环境下高效提取和合成特征,大幅提升对复杂任务的适应能力。

(6) 维度分段嵌入 (DsW)

功能:维度分段嵌入通过对输入数据的维度进行分段处理,适应任务数据维度的变化。这对于处理多模态数据(如图像、传感器数据和动作数据等)时尤为重要。

1. 核心目标

维度分段嵌入通过将高维输入数据分解为若干低维子空间,并分别进行处理,解决高维数据融合中信息丢失和计算复杂度过高的问题。这种方法特别适用于多源异构数据(如图像、传感器数据、机器人状态等)的处理。

2. 原理与流程
输入数据分解
· 高维数据被划分为多个子空间(segments)。
例如:输入特征维度为 DD,将其分解为 kk 个维度段 {S1,S2,…,Sk}\{S_1, S_2, …, S_k\},每段对应某些特定特征。
分段嵌入
· 对每个子空间应用独立的嵌入模块。
  • 嵌入模块可以是多层感知机(MLP)、卷积网络、或者注意力机制。
  • 每个模块专注于处理特定维度的特征,避免干扰。
全局整合
· 嵌入处理完成后,将每个子空间特征整合为统一表示。
整合方法可以是直接拼接、加权求和或使用全局注意力。
3. 模块设计
输入
·高维特征向量,例如机器人感知数据 X∈RDX \in \mathbb{R}^{D}。
输出
·嵌入后的特征表示,适应后续任务处理。
结构
1.分段模块:
  • 根据任务需求和特征类型划分输入维度。
  • 每段对应不同的特征子集,例如传感器特征、视觉特征等。
2.嵌入模块
为每段设计独立的嵌入机制,处理子空间特征。
3.整合模块
对分段嵌入结果进行全局整合,生成统一的特征向量。
4. 实现代码示例

以下是基于 PyTorch 的简单维度分段嵌入实现:

import torch  
import torch.nn as nn  
  
class DimensionSegmentWiseEmbedding(nn.Module):  
    def \_\_init\_\_(self, input\_dim, segment\_dims, embedding\_dims):  
        """  
        input\_dim: 输入特征维度  
        segment\_dims: 分段的维度列表,例如 \[32, 64, 32\] 表示分为 3 段  
        embedding\_dims: 每段嵌入后的维度列表,例如 \[16, 32, 16\]  
        """  
        super(DimensionSegmentWiseEmbedding, self).\_\_init\_\_()  
        assert sum(segment\_dims) == input\_dim, "分段维度总和必须等于输入维度!"  
        assert len(segment\_dims) == len(embedding\_dims), "分段数与嵌入数必须一致!"  
  
        self.segment\_dims = segment\_dims  
  
        # 为每段构建独立的嵌入模块  
        self.embedding\_layers = nn.ModuleList(\[  
            nn.Sequential(  
                nn.Linear(segment\_dim, embed\_dim),  
                nn.ReLU()  
            )  
            for segment\_dim, embed\_dim in zip(segment\_dims, embedding\_dims)  
        \])  
  
    def forward(self, x):  
        """  
        x: 输入数据,形状为 (batch\_size, input\_dim)  
        """  
        # 按分段维度切分输入  
        segments = torch.split(x, self.segment\_dims, dim=1)  
  
        # 对每段数据进行嵌入  
        embedded\_segments = \[  
            embed\_layer(segment) for segment, embed\_layer in zip(segments, self.embedding\_layers)  
        \]  
  
        # 将嵌入后的段拼接为全局特征  
        global\_embedding = torch.cat(embedded\_segments, dim=1)  
  
        return global\_embedding  
  
\# 示例输入  
input\_tensor = torch.randn(8, 128)  # (batch\_size, input\_dim)  
  
\# 创建模型  
model = DimensionSegmentWiseEmbedding(  
    input\_dim=128,  
    segment\_dims=\[32, 64, 32\],  
    embedding\_dims=\[16, 32, 16\]  
)  
output = model(input\_tensor)  
  
\# 打印输出形状  
print(f"嵌入后特征形状: {output.shape}")  
5. 优势
1.降低计算复杂度
高维数据被分段处理,每段独立计算,避免直接处理全局高维特征的计算开销。
2.减少信息丢失
每段特征由专属嵌入模块处理,确保特定维度的语义被充分保留。
3.适应多源异构数据
分段处理机制可以根据数据来源(如传感器、视觉信号等)灵活调整处理方式。

通过维度分段嵌入,CrossFormer 能够在高维数据场景中高效处理多源异构特征,提升模型的整体性能和任务适配性。

3. 总结

CrossFormer 是一种针对多任务机器人系统设计的先进架构,通过六项关键技术实现高效的跨任务学习与决策能力。首先,跨尺度嵌入层 (CEL) 统一多源数据特征表示,解决异质性问题;其次,长短距离注意力 (LsDA) 结合局部与全局注意力机制,捕捉任务中的长短期依赖关系;动态位置保差 (DPB) 动态适应不同平台的运动状态,增强空间特征感知能力;两阶段注意力层 (TSA) 则通过全局特征捕捉与任务特征细化,提高对复杂任务的理解与执行能力;此外,分层编码器-解码器 (HED) 通过分层特征分解与合成,优化多任务泛化能力;最后,维度分段嵌入 (DsW) 将高维数据分段处理,减少计算复杂度并提升多源数据整合能力。这些技术的协同作用使得 CrossFormer 成为适应多任务、多平台的智能模型架构,为机器人系统的感知与决策提供了强大的支持。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值