如何成为提示词工程师?

在这里插入图片描述

提示词工程是一种需求量大、回报丰厚的职业,需要最少的编码经验。

今天聊聊最近很火的一个话题:提示词工程师(prompts engineer )。

1.提示(prompt) 工程师是什么?

提示是指人类输入到 AI 模型中的指令。他们可以是:

用户生成的输入:用户在与 AI 模型交互时指定一次性查询和任务。

预定义指令:开发人员在训练 AI 模型时设置预定义规则。

人工智能没有固有的偏见,它的输出在很大程度上取决于你提供给它的提示,前提是你的提示属于其预先训练的数据集。

创建提示不一定需要编码技能,可以直接向 ChatGPT 和 Bing AI 等聊天机器人提问常识性问题。

但是,虽然看似很简单,但掌握提示工程具有挑战性,不是每个人都有这方面的天赋。

简单的请求使用基本查询,但运行更复杂的任务和示例需要详细的说明。

提示工程师,就是为客户或企业基于复杂的任务需求和示例需求,提供标准化提示词方案的工程师。

2.掌握提示词能力的基本要求

1. 理解语言模型架构

研究不同语言模型的后端流程,了解他们如何分析输入将帮助你编写准确、详细的提示。

2.熟悉不同大模型的限制

复杂的语言模型从互联网上提取最新信息,尽管它们通常遵循更严格的限制,你必须根据提示发挥创意。

3. 清楚地表达模棱两可的问题

及时的工程师必须学会表达模棱两可、具有挑战性的问题。不是每个人都能与 AI 互动。

事实上,临时用户在转发请求时遇到麻烦,尤其是那些涉及多步骤任务的请求。

4. 提供尽可能多的上下文

人工智能模型只回答输入,用不确定的措辞和通用术语向他们提供模糊的提示会产生不佳的结果。

5. 克服数据偏差

人工智能模型本质上是公正的.他们产生的任何有偏见的输出都源于他们的培训师使用的数据集。

请记住:AI 只研究模式和经验。即使是高级人工智能模型也会产生有害的反应,因为开发人员经常使用大量未经过滤的信息。

为了尽量减少不准确,请进行严格的测试,而不是手动筛选数据集。

不断为 AI 模型提供不同提示的变体,以发现哪些会触发有偏见的答案。

6. 测试提示时刻进行

复杂的提示很少第一次起作用,当创建更详细、更精确的说明时,你会注意到看似微小的变化所产生的影响。不要让错误让你气馁。

与其沉迷于一次写出完美的提示,不如适应 A/B 测试。

快速工程需要大量的试验和错误,不懈地编辑公式,直到找到正确的语气、措辞和术语来传达指令。

7. 研究行业趋势

提示工程师应该跟上当前的行业趋势,人工智能的快节奏发展使得专业化变得不切实际。

新的技术可以快速的主导流行的技术,所以不要只关注一种人工智能模型。

以不同AI平台之间的竞争为例。在 ChatGPT 凭借 GPT-3.5 掀起波澜的同时,微软等其他公司也开发了自己强大的语言模型,例如 Bing AI。

同时,OpenAI不断创新,发布了更高级的语言模型GPT-4 。

3.为什么提示工程很重要?

1. 大众需要预制提示词

虽然即时工程的学习曲线很容易,但普通的 AI 用户仍然觉得它很耗时。

他们更喜欢使用预制提示。他们不会制定独特的公式和提示词切题。

提示工程师可以最大限度地满足这一需求,除了为 AI 实验室全职工作外,还可以通分享针对热门请求的有效提示来建立在线追随者。

2. 人工智能并不总是做你想做的事

普通用户误以为 AI 是有知觉的,他们认为它具有读懂字里行间的处理能力,所以他们输入了模棱两可的查询。

不幸的是,这样做会产生较差的结果,人工智能无法复制人类的理解力。

它仅根据经过训练的数据集、语言模型和用户体验制定响应。

3. 高质量提示产生高质量响应

富有创新精神的工程师,可以重新发明现有的提示并找到提高精度的方法。

提示词总有改进的余地,强有力的动词和详细的说明,即使是简单的请求也会变得更好。

4. 对提示工程师的需求将会增加

随着越来越多的公司将语言模型整合到他们的产品中,预计对提示工程师的需求会激增。

与此同时,请专注于提高你的手艺。构建独特、创新提示的提示词知识库和 PDF,以向潜在雇主展示。

通过为不同的 LLM(大型语言模型)创建提示词,已经成为了一种新的职业选择。

如何让自己具备这项技能,来扩大你的未来职业选择,是一件值得深入考虑的事。

毕竟目前来看提示词工程的学习门槛还是不高的,因为对于求职者来说存在信息壁垒,但雇主需求却一直在上涨。

提示词工程是一种需求量大、回报丰厚的职业,需要最少的编码经验。许多非编码人员在行业中取得了成功。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值