当下RAG 系统([RAG(Retrieval Augmented Generation)及衍生框架:CRAG、Self-RAG与HyDe的深入探讨]在信息检索和智能生成方面展现出了巨大的潜力。然而,当将 RAG 系统应用于非英文场景时,面临着诸多复杂的挑战,其中 Embedding 的选择和处理成为了关键因素之一。合适的 Embedding 能够有效编码文本的语义和关系,从而为准确的信息检索和高质量的响应生成奠定基础。反之,若 Embedding 无法适应非英语语言的特点,将严重影响 RAG 系统的性能和实用性。今天我们一起了解一下为什么非英文场景下的RAG更需要embedding?
一、Embeddings的基本概念与功能
Embeddings,简而言之,是文本数据的数值化表示。它们将单词、句子甚至整个文档转化为数字,这些数字并非随机生成,而是经过精心设计,旨在捕捉文本中的意义和关系。例如,“dog”和“puppy”在数值空间中的位置会比“car”更接近,因为它们具有相似的语义。这种将意义编码为可测量形式的能力,使得embeddings在搜索、推荐系统和高级AI应用(如RAG)中变得不可或缺。
二、Embeddings在RAG系统中的作用
RAG系统([小模型在RAG(Retrieval-Augmented Generation)系统中的应用:提升效率与可扩展性的新路径]结合了embeddings的威力和专门的存储解决方案——向量数据库。这些系统通过embeddings将文本转化为数值向量,并利用向量数据库进行高效的相似性搜索。与传统的精确匹配搜索不同,向量数据库基于意义寻找最接近的匹配项。这一能力使得RAG系统能够从庞大的知识库中检索出最相关的信息,并据此生成精确、上下文相关的响应。embeddings和向量数据库共同构成了RAG系统成功的基石。
三、构建非英语RAG系统的挑战
尽管在英语环境中构建RAG系统已经是一项复杂的任务,但将其扩展到其他语言则引入了更多的挑战。以下是几个主要难点:
-
高质量训练数据的缺乏:英语在数字世界中占据主导地位,拥有丰富的高质量训练数据。相比之下,许多其他语言,尤其是资源较少的语言,缺乏多样化和标准化的数据集,这限制了在这些语言上训练的embeddings的质量。
-
模型优化偏见:像BERT和GPT这样的自然语言处理(NLP)模型最初是为英语开发的,并在多语言版本中优先考虑英语。这导致在多语言参数空间中学习时,较少表示的语言的性能可能会受到影响。
-
语言复杂性和多样性:英语具有相对简单的形态学结构,而许多其他语言则具有复杂的词形变化。此外,不同的语法或词序(如日语的主宾谓结构或阿拉伯语的灵活词序)也给针对英语结构优化的模型带来了额外的挑战。
-
语义和文化差异:捕捉跨语言的语义意义并非易事。单词和短语往往具有微妙的含义,这些含义无法直接翻译。例如,英语中的“love”在西班牙语中有“amor”,在希腊语中有“eros”或“agape”等多种文化上不同的等价物。未能考虑这些差异的embeddings在跨语言对齐方面会遇到困难。
四、为什么英语Embeddings更准确?
英语embeddings之所以更准确,主要归因于以下几点:
-
高质量训练数据的丰富性:英语在数据集方面拥有无与伦比的丰富性,如维基百科、书籍、研究论文和社交媒体内容等。
-
模型优化:NLP模型在初始开发时往往优先考虑英语,并在后续的多语言版本中保持这一偏向。
-
语言结构的简单性:与许多其他语言相比,英语的形态学结构相对简单,这使得模型更容易学习和理解。
五、非英语RAG系统中Embeddings的重要性
在构建非英语RAG系统时,embeddings的重要性不言而喻。以下是几个关键点:
-
提高检索准确性:当embeddings能够处理其他语言的复杂性时,RAG系统的检索结果将变得更加相关和准确。这确保了系统能够捕捉到非英语查询的微妙意义,从而检索出正确的信息。
-
增强用户信任和系统实用性:准确的embeddings有助于提高用户对RAG系统的信任度,因为系统能够提供准确且上下文相关的响应。这增强了系统的整体实用性,使其能够更有效地满足用户需求。
-
支持多语言功能:对于希望在全球范围内提供服务的组织而言,支持多语言功能的RAG系统([检索增强思考 RAT(RAG+COT):提升 AI 推理能力的强大组合]至关重要。通过投资高质量的多语言embeddings,并对其进行特定语言或任务的微调,这些系统可以满足不同语言用户的需求。
六、对比英语与多语言 Embedding 模型在荷兰语 RAG 系统中的应用表现
(一)实验背景与配置
为了全面评估不同 Embedding 模型在处理非英语语言(例如荷兰语)时的效能,我们选取了两个来自亚马逊 Bedrock 平台的模型进行对比分析:Cohere Embed English v3(专为英语优化)与 Cohere Embed Multilingual v3(专为多语言任务设计)。实验数据集采用荷兰语版的消防员指南,并借助 LangChain 框架构建本地化的向量存储系统。在此过程中,我们将文档分割为较小的段落,并分别利用不同的 Embedding 模型进行索引。
(二)测试案例与结果解读
针对问题“Welke rangen zijn er bij de brandweer?”(消防部门有哪些等级?),我们进行了测试。在荷兰语数据集中,“hiërarchie”这一术语与“rangen”在语义上相近,但在英语中,“hierarchy”与“ranks”的语义差异较大。Cohere Embed English v3 模型的响应较为宽泛,未能基于荷兰语文档的上下文进行精确匹配,因为它难以建立“hiërarchie”与“rangen”之间的语义联系,只能依赖通用的知识库。相比之下,Cohere Embed Multilingual v3 模型则能够准确地从文档中检索到相关信息,展示了其处理荷兰语特定语义的卓越能力,成功识别了查询与文档之间的语义关联。
(三)核心发现与结论
Cohere Embed English v3 在处理荷兰语查询时,由于缺乏必要的语义对齐机制,无法有效地从文档中检索出相关的上下文信息,这凸显了使用英语特定 Embedding 模型处理非英语任务的局限性。
而 Cohere Embed Multilingual v3 在测试中表现优异,能够高效地检索并利用文档中的上下文信息,这充分证明了多语言 Embedding 模型在准确检索和回答非英语查询方面的重要性。
通过实验分析,我们展示了英文embeddings在多语言环境中的局限性,以及多语言embeddings在提高检索准确性和用户信任方面的优势。对于在全球多语言环境中开发AI系统的组织而言,选择适合任务的embedding模型是非常重要的。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓