💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于XGBoost的负荷预测研究
1. 引言
负荷预测在电力系统中至关重要,能够帮助电力公司优化资源配置和提高供电可靠性。XGBoost(Extreme Gradient Boosting)是一种高效的梯度提升树算法,因其在处理大规模数据和复杂模型时的优越性能而受到广泛关注。
2. XGBoost算法概述
- **基本原理**:XGBoost通过构建多个弱学习器(决策树)并将其组合成一个强学习器,利用梯度提升方法逐步减少预测误差。
- **优点**:
- 高效的计算性能,支持并行处理。
- 内置正则化,防止过拟合。
- 支持缺失值处理和特征重要性评估。
3. 数据准备
- **数据收集**:收集历史负荷数据,包括电力负荷、气象数据(如温度、湿度、风速等)和社会经济数据(如人口、工业活动等)。
- **数据预处理**:
- 数据清洗:处理缺失值和异常值。
- 特征工程:生成新的特征(如时间特征、滞后特征等)以提高模型性能。
4. 模型构建
- **模型训练**:
- 使用XGBoost构建负荷预测模型,设置合适的超参数(如学习率、树的深度、子样本比例等)。
- 通过交叉验证选择最佳超参数组合。
- **模型评估**:
- 使用训练集和测试集评估模型性能,计算均方根误差(RMSE)、平均绝对误差(MAE)等指标。
5. 结果分析
- **预测结果**:将模型预测结果与实际负荷数据进行对比,分析模型的准确性。
- **可视化**:通过图表展示预测结果,帮助理解模型的表现和特征重要性。
6. 结论与展望
- XGBoost模型在负荷预测中表现出色,能够有效捕捉复杂的非线性关系。
- 未来的研究可以探索XGBoost与其他机器学习算法的集成,进一步提升预测精度和模型的鲁棒性。
📚2 运行结果
部分代码:
# 初始化存储各个评估指标的字典。 table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2']) for i in range(n_out): # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标 actual = [float(row[i]) for row in Ytest] #一列列提取 # 从测试集中提取实际值。 predicted = [float(row[i]) for row in predicted_data] # 从预测结果中提取预测值。 mse = mean_squared_error(actual, predicted) # 计算均方误差(MSE)。 mse_dic.append(mse) rmse = sqrt(mean_squared_error(actual, predicted)) # 计算均方根误差(RMSE)。 rmse_dic.append(rmse) mae = mean_absolute_error(actual, predicted) # 计算平均绝对误差(MAE)。 mae_dic.append(mae) MApe = mape(actual, predicted) # 计算平均绝对百分比误差(MAPE)。 mape_dic.append(MApe) r2 = r2_score(actual, predicted) # 计算R平方值(R2)。 r2_dic.append(r2) if n_out == 1: strr = '预测结果指标:' else: strr = '第'+ str(i + 1)+'步预测结果指标:' table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%']) return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table # 返回包含所有评估指标的字典。
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.
[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.
[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.
[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.
[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.
[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024.
🌈4 Python代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取