✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
雾天图像由于大气颗粒对日光散射的影响,其对比度会发生改变。为了恢复这些图像的对比度,已经设计了不同的方法。然而,缺乏一种评估这些方法性能或进行比较的方法。与图像质量评估或图像恢复领域不同,雾天图像对比度恢复没有简单的方法获得参考图像,这使得问题难以解决。本文提出了一种基于可见度等级的指标,该指标通过计算对比度恢复前后图像可见边缘梯度的比率来计算。这种方法提供了一个基于可见度等级(照明工程中常用概念)的可见度增强指标。
1. 雾天图像对比度恢复概述
雾天图像的对比度降低是由于大气颗粒对日光散射造成的。散射的光线会使图像中的物体变得模糊不清,并降低图像的整体对比度。为了解决这个问题,已经提出了许多对比度恢复方法。这些方法通常基于以下原理:
-
暗通道先验 (Dark Channel Prior, DCP):该方法假设大多数非天空区域的暗通道图像在至少一个颜色通道中接近于零。通过分析暗通道图像,可以估计雾的浓度,并用于恢复图像的对比度。
-
颜色衰减先验 (Color Attenuation Prior, CAP):该方法假设远处的物体颜色比近处的物体颜色更淡。通过分析图像的颜色信息,可以估计雾的浓度,并用于恢复图像的对比度。
-
深度估计 (Depth Estimation):该方法通过估计图像中每个像素的深度信息,可以恢复图像的对比度。
2. 现有评估方法的不足
现有的雾天图像对比度恢复方法评估方法主要包括以下几种:
-
主观评价: 这种方法通过人工观察对比度恢复后的图像,并进行打分来评价方法的性能。这种方法的主观性强,容易受到观察者个人偏好的影响。
-
客观评价: 这种方法使用一些客观指标来评价方法的性能,例如峰值信噪比 (PSNR)、结构相似性指数 (SSIM) 等。这些指标可以量化图像的质量,但并不能准确反映对比度恢复的效果。
-
参考图像: 如果存在雾天图像的参考图像,则可以使用参考图像来评价对比度恢复方法的性能。但是,在实际应用中,很难获得雾天图像的参考图像。
3. 基于可见度等级的指标
本文提出了一种基于可见度等级的指标来评估雾天图像对比度恢复方法的性能。可见度等级是照明工程中常用的概念,用于描述人眼对物体可视程度的评价。该指标通过计算对比度恢复前后图像可见边缘梯度的比率来计算。可见边缘梯度反映了图像中物体边缘的清晰程度,而比率则反映了对比度恢复的效果。
具体来说,该指标的计算步骤如下:
-
计算对比度恢复前后图像的梯度图。
-
计算可见边缘梯度,即梯度图中大于阈值的梯度值。
-
计算可见边缘梯度的比率,即对比度恢复后图像的可见边缘梯度与对比度恢复前图像的可见边缘梯度的比率。
该指标的取值范围为 0 到 1,值越高表示对比度恢复效果越好。
4. 实验结果
本文使用多个雾天图像数据集对该指标进行了实验评估。实验结果表明,该指标能够有效地评估雾天图像对比度恢复方法的性能。与其他指标相比,该指标更加客观和准确,并且与人眼的主观感受更加一致。
5. 结论
本文提出了一种基于可见度等级的指标来评估雾天图像对比度恢复方法的性能。该指标通过计算对比度恢复前后图像可见边缘梯度的比率来计算。实验结果表明,该指标能够有效地评估雾天图像对比度恢复方法的性能,并且更加客观和准确。
📣 部分代码
% Saint Etienne, France, August 30-September 7, 2007.
% http://perso.lcpc.fr/tarel.jean-philippe/publis/ics07.html
%
%%%% Cleaning
clc
clear all
close all
%%%% Images reading: the input 2 images must be grayscale
NameOri='Original.pgm';
%NameResto='Restored.pgm';
NameResto='Restored2.pgm';
%NameResto='Restored3.pgm';
%NameResto='Restored4.pgm';
%NameResto='Restored5.pgm';
I1=imread(NameOri);
I1=double(I1);
% if the input image is a color image, use following line
% I1=double(rgb2gray(uint8(I1)));
[nl,nc]=size(I1);
R1=imread(NameResto);
R1=double(R1);
% if the input image is a color image, use following line
% R1=double(rgb2gray(uint8(R1)));
%%%% Figure 1
figure(1)
colormap gray
subplot(1,2,1)
imagesc(I1)
axis image
title('原始图像')
⛳️ 运行结果
🔗 参考文献
[1]Nicolas Hautière, Tarel J P , Aubert D ,et al.Blind Contrast Restoration Assessment by Gradient Ratioing at Visible Edges[J]. 2008.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类