【干扰】共形极化阵列的波束形成,考虑了信号的极化参数,在极化域和空域联合抑制干扰附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在现代无线通信和雷达系统中,阵列天线技术因其波束形成、空间滤波和干扰抑制等优势而成为核心组成部分。传统的阵列天线设计主要关注阵元在二维平面上的排布以及波束在空域的形成。然而,随着无线电环境的日益复杂,信号和干扰不仅在空域具有方向性,在极化域也呈现出丰富的特性。传统的空域波束形成技术难以有效应对具有相同空域方向但极化不同的干扰信号。共形阵列天线则以其能够紧密贴合载体曲面的特性,在隐身、轻量化和提高空间利用率等方面展现出巨大潜力。将共形阵列与极化域处理相结合,即共形极化阵列,能够更全面地利用信号和干扰的空域和极化域信息,从而在复杂电磁环境中实现更优异的性能。

本文旨在深入探讨共形极化阵列的波束形成技术,重点聚焦于如何充分考虑信号的极化参数,并在极化域和空域联合抑制干扰。我们将首先概述共形极化阵列的基本概念和优势,然后详细阐述其波束形成原理和建模方法,接着深入分析如何在极化域和空域联合进行干扰抑制,并探讨相关的算法和技术。最后,我们将总结共形极化阵列在波束形成和抗干扰方面的优势,并展望其未来发展方向。

第一部分:共形极化阵列的基本概念与优势

1.1 共形阵列的概念与特点

与传统平面阵列不同,共形阵列的阵元分布在非平坦的曲面上。这种曲面结构使其能够更好地融入各种平台(如飞行器、舰船、车辆等)的外部轮廓,从而减小气动阻力、提高隐身性能和美学效果。共形阵列的设计和分析涉及对曲面上的电磁场的计算和处理,通常需要借助数值方法(如有限元法、边界元法等)进行建模和仿真。

共形阵列的波束形成面临一些挑战。首先,阵元之间的耦合效应在曲面上可能更加复杂且难以预测。其次,不同阵元的主方向可能不同,导致阵列流形向量(Array Manifold Vector)不再是简单的相位差项组成,而是与每个阵元的位置、方向以及曲面几何形状相关。这些特性增加了共形阵列波束形成算法的复杂性。

1.2 极化域处理的意义

电磁波具有极化特性,即其电场矢量在空间中的方向随时间的变化规律。常见的极化类型包括线极化(水平极化、垂直极化)、圆极化(左旋圆极化、右旋圆极化)和椭圆极化。信号源、传输路径和天线都会影响电磁波的极化状态。在复杂的电磁环境中,干扰信号的极化状态可能与期望信号不同。传统的空域波束形成器仅仅利用信号的空域方向信息,无法区分具有相同空域方向但不同极化状态的信号。

通过在极化域对信号进行处理,我们可以利用信号的极化差异来实现干扰抑制。例如,如果期望信号是垂直极化,而一个来自相同方向的干扰信号是水平极化,那么可以通过设计一个对垂直极化敏感而对水平极化不敏感的接收天线或处理算法来抑制该干扰。极化处理通常涉及对接收信号的极化分量进行分解、重组和加权。

1.3 共形极化阵列的独特优势

共形极化阵列将共形阵列的几何灵活性与极化处理能力相结合,带来了以下独特优势:

  • 更全面的信息利用:

     同时利用信号的空域和极化域信息,能够更有效地对信号进行区分和处理,特别是在干扰来自与期望信号相同或相近空域方向时。

  • 增强的干扰抑制能力:

     通过在极化域和空域联合进行滤波,可以抑制具有不同极化或不同空域方向的干扰,显著提升系统在复杂电磁环境下的抗干扰能力。

  • 更紧凑的系统设计:

     共形阵列能够更好地集成到载体中,减小系统体积和重量。同时,通过极化处理,有时可以减少阵元数量,进一步实现紧凑设计。

  • 提高系统性能:

     联合利用空域和极化域信息,可以提高信噪比(SNR)和信干噪比(SINR),从而改善系统的检测、估计和通信性能。

共形极化阵列的波束形成方法可以根据其设计目标和所利用的信息进行分类。常见的分类方式包括:

  • 固定权波束形成:

     权向量是预先设计好的,不随接收信号的变化而改变。适用于期望信号方向和极化状态已知且稳定的场景。

  • 自适应波束形成:

     权向量根据接收到的信号进行实时调整,以适应不断变化的信号和干扰环境。自适应波束形成能够更好地应对动态干扰。

根据处理域的不同,波束形成可以分为:

  • 空域波束形成:

     仅利用阵元之间的空域位置差异进行加权。在共形阵列中,需要考虑阵元在曲面上的位置和方向。

  • 极化域波束形成:

     仅利用不同极化分量之间的差异进行加权。

  • 空域-极化联合波束形成:

     同时利用空域和极化域信息进行加权,以实现更全面的信号处理和干扰抑制。这也是本文重点关注的内容。

第三部分:在极化域和空域联合抑制干扰的原理与技术

在共形极化阵列中,联合利用空域和极化域信息进行干扰抑制是提高系统性能的关键。其核心思想是构建一个滤波器,使得其在期望信号的空域方向和极化状态上具有高增益,而在干扰信号的空域方向和极化状态上具有低增益。

3.3 自适应联合空域-极化波束形成算法

在实际应用中,干扰环境是动态变化的,因此需要自适应的波束形成算法来实时调整权向量。常见的自适应算法包括:

  • 最小均方(LMS)算法及其变种:

     通过迭代地调整权向量,使得输出信号与期望信号之间的均方误差最小化。在极化域,需要定义合适的误差信号和更新规则。

  • 递归最小二乘(RLS)算法:

     具有更快的收敛速度,但计算复杂度更高。

  • 基于样本协方差矩阵的自适应算法:

     例如,通过估计接收信号的协方差矩阵,然后利用LCMV等原理计算权向量。在极化域,需要构建包含极化信息的样本协方差矩阵。

自适应算法在共形极化阵列中的应用需要考虑曲面几何形状对阵列流形向量的影响,以及阵元之间的耦合。可能需要开发新的自适应算法或者对现有算法进行改进,以适应共形阵列的特性。

3.4 利用极化信息构建干扰子空间

另一个联合干扰抑制的有效方法是构建干扰子空间。干扰子空间是由所有干扰信号的联合空域-极化阵列流形向量张成的空间。理想的波束形成器应该使得其权向量正交于干扰子空间,从而完全抑制干扰。

在实际应用中,无法完全得知干扰的空域方向和极化状态。可以通过对接收信号的协方差矩阵进行特征分解来估计信号和干扰子空间。较大的特征值对应的特征向量SPAN信号加干扰子空间,而较小的特征值对应的特征向量SPAN噪声子空间。通过合适的子空间分解技术,可以估计出干扰子空间。

利用估计的干扰子空间,可以通过以下方式进行干扰抑制:

  • 投影法:

     将接收信号投影到期望信号子空间,或者投影到干扰子空间的补空间。

  • 约束法:

     将波束形成器的权向量约束在干扰子空间的补空间内。

在共形极化阵列中,构建准确的干扰子空间需要考虑阵列流形向量的非线性特性以及极化信息的影响。可能需要利用更先进的信号处理技术,如高阶累积量或稀疏恢复技术,来更准确地估计干扰子空间。

3.5 极化匹配滤波

极化匹配滤波是一种在极化域增强期望信号并抑制干扰的技术。其基本思想是设计一个与期望信号极化状态相匹配的滤波器。对于一个具有极化向量 𝑝𝑑pd 的期望信号,一个理想的极化匹配滤波器应该对具有该极化状态的信号具有最大响应,而对其他极化状态的信号具有较小的响应。

在联合空域-极化处理中,可以将极化匹配滤波与空域波束形成相结合。例如,可以先在每个阵元层面进行极化匹配滤波,然后再进行空域波束形成。或者,可以将极化信息融入到空域波束形成的设计中,例如通过构建联合空域-极化匹配滤波器。

对于共形极化阵列,每个阵元的极化响应可能因其在曲面上的位置和方向而异。因此,极化匹配滤波的设计需要考虑这些个体差异。

第四部分:共形极化阵列波束形成面临的挑战与未来展望

尽管共形极化阵列在联合干扰抑制方面展现出巨大潜力,但其波束形成仍然面临一些挑战:

  • 复杂的阵列流形建模和估计:

     曲面几何形状、阵元耦合和极化响应的个体差异使得共形极化阵列的阵列流形建模和估计变得复杂。精确的阵列流形信息对于实现最优的波束形成至关重要。

  • 自适应算法的收敛性和鲁棒性:

     在动态环境下,自适应算法的收敛速度、稳定性和抗误差能力需要进一步研究和改进,尤其是在处理非理想信道和阵列特性时。

  • 计算复杂度:

     共形极化阵列通常具有较多的阵元和极化通道,导致波束形成算法的计算量较大,需要高效的算法和硬件实现。

  • 宽带信号处理:

     上述讨论主要集中于窄带信号。对于宽带信号,需要考虑频率选择性衰落和阵列流形随频率的变化,使得波束形成设计更加复杂。

  • 非理想因素的影响:

     阵元误差、通道不一致性和非理想的极化响应都会影响波束形成性能,需要进行校准和补偿。

未来,共形极化阵列波束形成的研究可以从以下几个方向展开:

  • 基于机器学习的波束形成:

     利用深度学习等机器学习技术,可以学习复杂的联合空域-极化阵列流形和干扰特性,实现智能化的波束形成和干扰抑制。

  • 稀疏阵列和稀疏恢复技术:

     探索在共形阵列上实现稀疏阵列布局,并利用稀疏恢复技术来降低阵元数量,同时保持良好的波束形成性能。

  • 鲁棒波束形成:

     研究能够应对阵列误差、信道不确定性和干扰特性未知等非理想因素的鲁棒波束形成算法。

  • 分布式波束形成:

     对于大型共形阵列,可以考虑分布式波束形成架构,将处理任务分配到多个节点,降低计算复杂度。

  • 与其他技术的融合:

     将共形极化阵列波束形成与多输入多输出(MIMO)、协同处理等技术相结合,进一步提升系统容量和性能。

结论

共形极化阵列通过将共形阵列的几何灵活性与极化处理能力相结合,为现代无线通信和雷达系统提供了一种强大的干扰抑制手段。通过充分考虑信号的极化参数,并在极化域和空域进行联合波束形成,能够有效抑制来自复杂电磁环境的干扰,特别是在干扰与期望信号空域方向相近或相同时。

⛳️ 运行结果

🔗 参考文献

[1]张远芳.极化域‐空域联合的参数估计和干扰抑制方法研究[D].电子科技大学,2016.DOI:10.7666/d.D00988968.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值