基于深度学习的Lidar 3D点云表面缺陷检测方法

1. 点云缺陷检测

三维点云异常检测旨在从训练集中检测异常数据点,常用的点云异常检测方法通常采用多个特征记忆库来完全保留局部和全局表示,这种要考虑高昂的计算复杂度和特征间的不匹配问题。

2.实现方法

当前的异常检测方法大多是无监督的,主要针对二维图像,其模型通常在具有成熟架构的图像上进行训练。与二维图像相比,三维点云具有更丰富的结构信息,但也存在无序、高度稀疏和不规则分布的问题。

Real3D-AD

在这里插入图片描述
Real3D-AD一个大规模、高分辨率的三维异常检测数据集Real3D-AD被提出。该数据集中的对象具有0.001mm-0.0015mm的分辨率、360度覆盖范围和完美的原型。Real3D-AD将图像异常检测中的PatchCore应用于点云异常检测,并开发了一种通用的基于配准的点云异常检测器Reg3D-AD。Reg3D-AD采用双特征表示方法来保留训练原型的局部和全局特征,虽然检测精度显著,但推理速度较慢。当前的点云异常检测器主要分为两类:
(1)基于重建的方法,通过自动编码器重建输入点云数据,并通过比较原始数据和重建数据之间的偏差来识别异常。然而,这些方法对分辨率敏感,导致推理速度较慢且精度较低。
(2)基于记忆库的方法,其中记忆库用于存储代表性特征,以隐式构建正态分布并寻找分布外的缺陷。与前者相比,直接使用预训练的特征提取器构建记忆库具有训练速度快且不受点云分辨率影响的优点。
(3)现有的点云异常检测器通常采用多个特征记忆库来完全保留局部和全局表示,这会带来高昂的计算复杂度和特征间的不匹配问题。
在这里插入图片描述

3. PointCore

为优化当前点云异常检测算法存在的问题,如计算复杂、特征不匹配等,可参考PointCore框架对算法进行改进和升级。

3.1全局和局部配准

使用FPFH特征描述符和随机抽样一致性(RANSAC)算法来实现点云的全局配准。为了增强点云配准的稳定性,引入了点到平面ICP算法来对全局配准的输出进行局部优化。假设需要配准的两个点云分别为 X s X_s Xs(源点云)和 X t X_t Xt(目标点云),配准过程如下:

  1. 应用从全局配准获得的旋转矩阵和平移向量来变换 X s X_s Xs
  2. X t X_t Xt中搜索与 X s X_s Xs中的 p i p_i pi最接近的 q i q_i qi,其中 q i q_i qi的法向量表示为 n i n_i ni
  3. 假设最优旋转欧拉角 α \alpha α β \beta β γ \gamma γ接近0,则 cos ⁡ ( θ ) → 1 \cos(\theta)\to1 cos(θ)1 sin ⁡ ( θ ) → 0 \sin(\theta)\to0 sin(θ)0 θ → 0 \theta\to0 θ0。旋转矩阵 R R R可以近似表示为: R ≈ [ 1 − γ β γ 1 − α − β α 1 ] R\approx\begin{bmatrix}1&-\gamma&\beta\\\gamma&1&-\alpha\\-\beta&\alpha&1\end{bmatrix} R 1γβγ1αβα1
  4. 假设最优平移向量为 t = [ t x , t y , t z ] t = [t_x, t_y, t_z] t=[tx,ty,tz]。损失函数通过Moore-Penrose逆表示为最小二乘问题: E ( R , t ) = ∑ i = 1 n ( ( R p i + t − q i ) T n i ) 2 E(R,t)=\sum_{i = 1}^{n}((Rp_i + t - q_i)^Tn_i)^2 E(R,t)=i=1n((Rpi+tqi)Tni)2
  5. 应用计算得到的旋转矩阵和平移向量来变换 X s X_s Xs,并重复,直到损失值低于预定义的阈值。注意,用于配准的目标点云(X_t)是固定的。
    在这里插入图片描述

3.2记忆库构建

  • 坐标采样:采用贪婪下采样算法对输入点云进行采样。给定输入点云(X)和点集 C a C_a Ca α \alpha α C a C_a Ca中的点数。我们的目标是从 C a C_a Ca中获得 S m a x S_{max} Smax个均匀分布的点。具体步骤如下:
    1. C a C_a Ca中随机选择 S i n i t S_{init} S<
### 使用3D点云进行缺陷检测方法 #### 数据获取 为了实现零件的三维缺陷检测,首先需要通过高精度扫描设备获得零件表面的三维数据。常用的采集方式包括结构光扫描、激光三角测量以及工业CT等技术[^1]。 #### 三维重建 一旦获得了原始点云数据之后,则需对其进行预处理操作如去噪和平滑化处理;接着采用合适的算法完成模型重构工作,例如泊松曲面重建法或是基于Alpha形状理论构建实体边界表示形式。此过程能够有效去除噪声干扰并恢复出较为真实的几何形态特征。 #### 点云配准 对于待测工件而言,在生产加工过程中可能会存在姿态变化情况,因此要将实际测量所得的目标点云集与设计图纸上的理想状态即标准模板之间建立精确的空间变换关系——这就是所谓的“配准”。常用的技术手段有迭代最近点(ICP)及其改进版本Fast Global Registration等高效稳健匹配策略来最小化两者间的距离差异。 #### 缺陷分析 最后一步就是对比已注册好的两个版本之间的细微差别从而定位潜在质量问题所在位置。通常会计算残差向量场分布状况作为评判依据之一,并借助可视化软件直观呈现出来便于后续审查人员判断是否存在超标情形发生。此外还可以结合机器学习分类器自动识别特定类型的瑕疵模式提高工作效率和准确性水平。 ```python import numpy as np from open3d import * def detect_defects(source_cloud, target_cloud): # 对齐源点云和目标点云 reg_p2p = registration_icp(source_cloud, target_cloud, threshold=0.02) # 计算配准后的误差 diff_cloud = source_cloud.transform(reg_p2p.transformation) - target_cloud return diff_cloud ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知来者逆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值