基于先验LiDAR点云地图的单目VIO定位

本文提出一种实时轻量级的单目相机定位方法,利用2D-3D线段匹配在先验LiDAR地图中进行定位,有效抑制VIO系统的位姿误差。通过离线提取的3D线段和在线提取的2D线段建立对应,结合VIO姿态估计进行位姿优化,适用于结构化环境。实验表明,该方法能减少漂移并提升定位精度。
摘要由CSDN通过智能技术生成


Yu H , Zhen W , Yang W , et al. Monocular Camera Localization in Prior LiDAR Maps with 2D-3D Line Correspondences[J]. 2020. IROS 2020

武汉大学、卡内基梅隆大学

针对问题:

如何使用先验LiDAR地图约束单目VO位姿漂移?

提出方法:

首先使用LiDAR构建先验LiDAR点云地图并离线提取点云地图中的三维直线信息;

通过将场景中的三维线段投影回图像平面与图像中检测出的二维线段进行匹配,最小化线段之间的距离来实现对当前相机位姿的约束效果。

达到效果:

在Euroc室内数据集和通过FARO scanner focus3D构建的数据集上进行了测试,显著抑制了VIO系统的位姿误差累计问题。

存在问题:

方法主要适用于存在较多结构化信息的场景;

方法针对静态场景设计,对于动态场景中结构变化大不能有效应对。

代码地址:在公众号「计算机视觉工坊」,后台回复「VIO定位」,即可直接下载。

Abstract

在先验地图中实现轻量级的相机定位对于基于视觉的导航至关重要。目前,VO和VIO技术在状态估计方面已经发展得很好,但在闭环时不可避免地存在位姿累积漂移和跳动的问题。为了克服这些问题,我们提出了一种高效的单目相机定位方法,在先验LiDAR地图中直接使用2D-3D线段匹配构建数据关联,由此构建先验LiDAR地图提供的绝对约束。为了处理LiDAR地图之间的外观差异以及LiDAR点云和图像不同模态信息之间的信息差异,几何三维线从先验LiDAR地图中离线提取,而稳健的二维线则从视频序列中在线提取。通过VIO的位姿估计信息,我们可以有效地获得粗略的2D-3D线段的对应关系。然后通过对匹配上的线段最小化重投影误差对当前相机位姿进行不断地迭代优化,对没有匹配上的外点进行剔除。在EuRoC MAV数据集和我们采集的数据集上的实验结果表明,所提出的方法能够有效地在结构化环境中估计相机的位姿,而不会出现累积漂移或位姿跳跃情况。

Main Contribution

这项工作的主要贡献是利用2D-3D线段在几何上的对应关系实现了单目相机在先验地图中的定位。它有效地将每个关键帧与先验LiDAR地图进行数据关联,并且几何线的对应关系对外观变化是稳健且对外观变化具有鲁棒性,适用于城市环境中的相机定位。

Proposed Method

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值