Planning-Frenet坐标和Cartesian坐标转换上

本文根据B站up:忠厚老实的老王 的视频《自动驾驶决策规划算法第一章第三节(上) 直角坐标与自然坐标转换》整理,连接:https://www.bilibili.com/video/BV1tQ4y1r7fh?spm_id_from=333.1007.top_right_bar_window_history.content.click

Planning-Frenet坐标和Cartesian坐标转换中
Planning-Frenet坐标和Cartesian坐标转换下

1 基础知识

1.1 曲线坐标系和直角坐标系的两点不同

1.1.1 曲线坐标系的基向量一般不是常向量

在这里插入图片描述

在直角坐标系中,基向量为 i ⃗ , j ⃗ \vec{i},\vec{j} i ,j ,则 d i ⃗ d x = 0 ⃗ \frac{d\vec{i}}{dx} = \vec{0} dxdi =0 ,在曲线坐标系中,基向量 τ ⃗ \vec{\tau} τ 的模 ∣ τ ⃗ ∣ = 1 |\vec{\tau}| = 1 τ =1,但是其方向会随着 s s s的变化而变化,即 d τ ⃗ d s ≠ 0 ⃗ \frac{d \vec{\tau}}{ds} \neq \vec{0} dsdτ =0

1.1.2 点的曲线坐标变化与点的实际位移一般不一致

在这里插入图片描述

在直角坐标系中一个点移动距离等于其在相应坐标轴上移动的距离,然而在曲线坐标系中则不一定相等,例如在直角坐标系中的点 ( x , y ) (x,y) (x,y)移动到 ( x + Δ x , y ) (x+\Delta x, y) (x+Δx,y),则在 x x x上投影也移动了 Δ x \Delta x Δx的距离。曲线坐标系中的点 ( s , l ) (s,l) (s,l)移动到点 ( s + Δ s h , l ) (s+\Delta s_h, l) (s+Δsh,l),然而其投影在曲线上移动了 Δ s r \Delta s_r Δsr的距离, Δ s h \Delta s_h Δsh Δ s r \Delta s_r Δsr一般不相等。 因此在曲线坐标系中的弧微分有两个:一是点实际运动曲线的弧微分 d d s h \frac{d}{d{s_h}} dshd,一是点在参考曲线(坐标系)上的弧微分 d d s r \frac{d}{d{s_r}} dsrd

在这里插入图片描述

在自动驾驶系统中,当车辆沿着参考线行驶时,点在车辆行驶轨迹上 s h s_h sh对时间 t t t的微分是车速,即 d s h d t = ∣ v ⃗ ∣ \frac{d {s_h}}{dt} = |\vec{v}| dtdsh=v ,此点在参考线上投影的微分却于此不相等,即 d s r d t = s ˙ \frac{d {s_r}}{dt} = \dot{s} dtdsr=s˙

1.2 位矢的导数

在这里插入图片描述

轨迹上一个点的位置矢量为 r ⃗ \vec{r} r ,方向为 τ ⃗ \vec{\tau} τ ,沿轨迹移动了 d s ds ds,位置矢量移动了 Δ r ⃗ \Delta \vec{r} Δr ,则 r ˙ ⃗ = d r ⃗ d t = d r ⃗ d s × d s d t \vec{\dot{r}} = \frac{d \vec{r}}{dt} = \frac{d \vec{r}}{ds} \times \frac{ds}{dt} r˙ =dtdr =dsdr ×dtds,当 d t → 0 dt \rightarrow 0 dt0时, ∣ Δ r ⃗ ∣ d s → 1 \frac{|\Delta \vec{r}|}{ds} \rightarrow 1 dsΔr 1,方向趋近于轨迹在位置矢量 r ⃗ \vec{r} r 处的切线方向。因此:
r ˙ ⃗ = 1 × τ ⃗ × d s d t = ∣ v ⃗ ∣ τ ⃗ = v ⃗ (1-1) \vec{\dot{r}} = 1 \times \vec{\tau} \times \frac{ds}{dt} = |\vec{v}| \vec{\tau} = \vec{v} \tag{1-1} r˙ =1×τ ×dtds=v τ =v (1-1)

1.3 Frenet公式

在这里插入图片描述

向量 τ ⃗ \vec{\tau} τ 是切线方向,向量 n ⃗ \vec{n} n 是法线方向,有:
{ d τ ⃗ d s = κ n ⃗ d n ⃗ d s = − κ τ ⃗ \begin{cases} \frac{d \vec{\tau}}{ds} = \kappa \vec{n} \\ \frac{d \vec{n}}{ds} = - \kappa \vec{\tau} \end{cases} {dsdτ =κn dsdn =κτ
d τ ⃗ d s = κ n ⃗ \frac{d \vec{\tau}}{ds} = \kappa \vec{n} dsdτ =κn 的证明如下:

在这里插入图片描述

∣ d τ ⃗ ∣ = 2 × 1 × s i n ( d θ 2 ) |d \vec{\tau}| = 2 \times 1 \times sin(\frac{d \theta}{2}) dτ =2×1×sin(2dθ),当 d s → 0 ds \rightarrow 0 ds0时, d τ ⃗ d \vec{\tau} dτ 的方向趋近于 τ ⃗ \vec{\tau} τ 垂直方向,即 n ⃗ \vec{n} n 的方向。因此:
d τ ⃗ d s = ∣ d τ ⃗ ∣ d s × n ⃗ = 2 s i n ( d θ 2 ) d s × n ⃗ = d θ d s × n ⃗ = κ × n ⃗ \frac{d \vec{\tau}}{ds} = \frac{|d \vec{\tau}|}{ds} \times \vec{n} = \frac{2 sin(\frac{d \theta}{2})}{ds} \times \vec{n}= \frac{d \theta}{ds} \times \vec{n} = \kappa \times \vec{n} dsdτ =dsdτ ×n =ds2sin(2dθ)×n =dsdθ×n =κ×n

1.3 ADC在轨迹和道路几何上向量 τ ⃗ \vec{\tau} τ n ⃗ \vec{n} n 的导数

在这里插入图片描述

在质点轨迹上:
{ τ h ˙ ⃗ = d τ h ⃗ d t = d τ h ⃗ d s h × d s h d t = κ h ∣ v h ⃗ ∣ n h ⃗ n h ˙ ⃗ = d n h ⃗ d s = d n h ⃗ d s h × d s h d t = − κ h ∣ v h ⃗ ∣ τ h ⃗ (1-2) \begin{cases} \vec{\dot{\tau_h}} = \frac{d \vec{\tau _h}}{dt} = \frac{d \vec{\tau _h}}{ds_h} \times \frac{d s_h}{dt} = \kappa_h |\vec{v_h}| \vec{n_h} \\ \vec{\dot{n_h}} = \frac{d \vec{n _h}}{ds} = \frac{d \vec{n _h}}{ds_h} \times \frac{d s_h}{dt} = - \kappa_h |\vec{v_h}| \vec{\tau_h} \tag{1-2} \end{cases} {τh˙ =dtdτh =dshdτh ×dtdsh=κhvh nh nh˙ =dsdnh =dshdnh ×dtdsh=κhvh τh (1-2)
在参考线轨迹上:
{ τ r ˙ ⃗ = d τ r ⃗ d t = d τ r ⃗ d s r × d s r d t = κ r s r ˙ n r ⃗ n r ˙ ⃗ = d n r ⃗ d t = d n r ⃗ d s r × d s r d t = − κ r s r ˙ τ r ⃗ (1-3) \begin{cases} \vec{\dot{\tau_r}} = \frac{d \vec{\tau _r}}{dt} = \frac{d \vec{\tau _r}}{ds_r} \times \frac{d s_r}{dt} = \kappa_r \dot{s_r} \vec{n_r} \\ \vec{\dot{n_r}} = \frac{d \vec{n _r}}{dt} = \frac{d \vec{n _r}}{ds_r} \times \frac{d s_r}{dt} = - \kappa_r \dot{s_r} \vec{\tau_r} \tag{1-3} \end{cases} {τr˙ =dtdτr =dsrdτr ×dtdsr=κrsr˙nr nr˙ =dtdnr =dsrdnr ×dtdsr=κrsr˙τr (1-3)
已知 r ⃗ , τ ⃗ , n ⃗ , κ \vec{r},\vec{\tau},\vec{n},\kappa r ,τ ,n ,κ,则 v ⃗ = r ˙ ⃗ = ∣ v ⃗ ∣ τ ⃗ \vec{v} = \vec{\dot{r}} = |\vec{v}| \vec{\tau} v =r˙ =v τ
a ⃗ = d v ⃗ d t = d ∣ v ⃗ ∣ τ ⃗ d t = d ∣ v ⃗ ∣ d t τ ⃗ + ∣ v ⃗ ∣ d τ ⃗ d t = ∣ v ˙ ⃗ ∣ τ ⃗ + ∣ v ⃗ ∣ τ ˙ ⃗ = ∣ v ˙ ⃗ ∣ τ ⃗ + ∣ v ⃗ ∣ 2 κ n ⃗ (1-4) \vec{a} = \frac{d \vec{v}}{dt} = \frac{d |\vec{v}| \vec{\tau}}{dt} = \frac{d |\vec{v}|}{dt} \vec{\tau} + |\vec{v}|\frac{d \vec{\tau}}{dt} = |\vec{\dot{v}}| \vec{\tau} + |\vec{v}| \vec{\dot{\tau}} = |\vec{\dot{v}}| \vec{\tau} + |\vec{v}|^2 \kappa \vec{n} \tag{1-4} a =dtdv =dtdv τ =dtdv τ +v dtdτ =v˙ τ +v τ˙ =v˙ τ +v 2κn (1-4)

Reference

[1] 自动驾驶决策规划算法第一章第三节(上) 直角坐标与自然坐标转换

[2] Frenet坐标系与Cartesian坐标系互转

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Frenet坐标系是一种常用于无人驾驶路径规划中的局部路径规划方法。它是由两个坐标系组成的,分别是Frenet纵向坐标系和横向坐标系。 Frenet纵向坐标系主要用于描述车辆在路径上的纵向运动,它的原点位于路径上的某一点,纵轴与路径的切线方向一致。其中,s轴表示纵向距离,表示车辆在路径上行驶的位置。而d轴表示横向距离,表示车辆在路径上的横向偏移量,即车辆离路径的距离。 Frenet横向坐标系用于描述车辆在路径上的横向运动,它的原点也位于路径上的某一点,横轴与路径的法向方向(垂直于切线方向的方向)一致。其中,l轴表示横向距离,表示车辆在路径的左右偏移量,即车辆相对于路径的位置。而r轴表示横向曲率半径,表示车辆所在位置的曲率半径,它与路径的曲率有关。 使用Frenet坐标系进行路径规划时,首先需要根据路径曲线,将路径离散化为一系列的路径点。然后,根据车辆当前状态(包括位置、速度、加速度等),在Frenet坐标系下进行规划。局部路径规划的目标是生成一条较短且安全的路径,能够使车辆沿着路径稳定行驶。 在Frenet坐标系下,路径规划算法主要涉及到横向运动和纵向运动的规划。横向运动规划主要考虑车辆与车道的对齐以及避免碰撞等因素,通常使用虚拟弓形路径或者多项式拟合等方法进行规划。纵向运动规划主要考虑车辆的速度和加速度等因素,以及与前车的保持安全距离和行驶速度的匹配等要求,一般采用经典的PID控制方法或者模型预测控制等技术。 总之,Frenet坐标系是无人驾驶路径规划中一种常用的局部路径规划方法,通过将车辆位置在路径上的纵向和横向运动分解为Frenet坐标系下的变量,并结合车辆动力学和环境约束,可以实现车辆的稳定行驶和避免碰撞等目标。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值