点云曲率计算

### 点云曲率计算方法 对于给定的一个点 \( p \),找到其 \( k \) 个最近邻点。随后,计算这些邻域点的协方差矩阵 \( C \)[^2]。 #### 协方差矩阵构建与特征值分解 假设已经获取到某个点及其邻居点集,则可按照如下方式构建协方差矩阵: \[ C = \frac{1}{k} \sum_{i=0}^{k}(p_i-\bar{p})(p_i-\bar{p})^\top \] 其中 \( \bar{p} \) 表示这组点坐标的均值向量;\( p_i \) 是第 i 个邻居点坐标向量。接着对得到的协方差矩阵执行特征值分解操作来获得三个实数特征值 λ₁,λ₂ 和 λ₃ (按大小降序排列),以及对应的单位正交基底(即特征向量)。 ```cpp Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eig(C); Eigen::Vector3d eigenvalues = eig.eigenvalues(); // 特征值已自动排序为升序,这里需要反转顺序使其成为降序 eigenvalues.reverseInPlace(); ``` #### 曲率估算 根据上述所得特征值,能够进一步定义不同类型的曲率度量指标: - **高斯曲率(K)**: 可由最小两个特征值得出乘积表示,即 K = λ₂ * λ₃。 - **平均曲率(H)**: 则可通过所有三个特征值之和的一半给出 H=(λ₁ + λ₂ + λ₃)/2[^1]。 另外还有一种常用表达形式用于衡量局部形状特性——形状指数(S): \[ S=\arctan\left(\sqrt{\frac{(H+\sqrt{H^2-K})-(H-\sqrt{H^2-K})}{(H+\sqrt{H^2-K})+(H-\sqrt{H^2-K})}}\right)\times\frac{2}{\pi}\in[-1,+1]\] 此公式能有效区分凹凸表面区域并提供直观理解。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云登山者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值