深入理解Serdes 结构 之 CTLE和DFE 技术

自适应算法。Rx端的均衡通常需要满足不同材质和长度信道的特性,并对信号不同频率成分的衰减进行补偿。CTLE和DFE通常都会使用自适应算法(Self-Adaptive Algorithm)实时动态调整来应对信道的特性变化。如果不了解算法实现,就不能准确的理解DFE的本质。

关于自适应算法有很多的教材,比如Simon Haykin著的《自适应滤波器原理》,最近翻看,真的是头大。哎,后悔当初数学没有好好学,现在还在慢慢啃。只能说很难理解。

### SerDes中的DFE (Decision Feedback Equalization) #### 高速通信系统的挑战 对于高速(>5 Gbps)SerDes,信号的抖动(如ISI相关的确定性抖动)可能会超过或接近一个符号间隔(UI),这使得单单使用线性均衡器不再适用。线性均衡器的一个主要问题是它会同时放大噪声有用信号,并不会改善信噪比(SNR)或者误码率(BER)[^1]。 #### DFE的工作原理 为了克服上述局限性,在高速SerDes设计中引入了一种称为决策反馈均衡器(DFE)的技术DFE是一种非线性均衡方法,其核心思想在于利用之前已经决定的数据位(historical bits)来调整当前数据位的检测阈值。这种方法能够有效地减少由前面比特引起的干扰(ISI),从而提高接收机性能并改进SNR。 具体来说,多抽头(tap) DFE考虑了更远距离的历史比特对当前待检索单元的影响。因为高频分量衰减较慢,所以它们可能导致后续多个单位间的相互作用;而多抽头结构正好可以对此类效应做出补偿,成为现代CDR电路的重要发展方向之一[^3]。 #### 自适应算法的重要性 值得注意的是,实际应用环境中传输路径可能存在各种差异,比如不同的材料属性以及长度等因素造成的频域响应变化。因此,RX端所使用的均衡技术往往需要具备一定的灵活性以适应这些不确定性。CTLEDFE一般都配备有自适应机制(self-adaptive algorithm),可以根据实时监测到的信息自动调节参数设置,确保最佳工作状态下的稳定性可靠性[^2]。 ```python def simulate_dfe(signal, history_bits=3): """ Simulate a simple Decision Feedback Equalizer. :param signal: Input binary sequence as list of integers (-1 or 1). :param history_bits: Number of previous decisions to consider for feedback. :return: Output after applying DFE correction. """ output = [] decision_feedback = [0]*history_bits for i in range(len(signal)): corrected_signal = sum(decision_feedback[-j-1]*signal[i-j-1] if i>=j+1 else 0 for j in range(history_bits)) current_decision = 1 if (signal[i]+corrected_signal)>0 else -1 # Update the history with new decision decision_feedback.append(current_decision) output.append(current_decision) return output[history_bits:] ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

那么菜

你的鼓励和批评是我最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值