相关文章跳转:
1. 定义
1.1 数值解(Numeric solution)
数值解,即采用某种计算方法,如有限元的方法,数值逼近,插值的方法,得到的解。当无法由微积分技巧求得解析解时,这时便只能利用数值分析的方法来求得其数值解了。在数值分析的过程中,首先会将原方程式加以简化,以利后来的数值分析。例如,会先将微分符号改为差分符号等。然后再用传统的代数方法将原方程式改写成另一方便求解的形式。这时的求解步骤就是将一独立变量带入,求得相依变量的近似解。因此利用此方法所求得的相依变量为一个个分离的数值(discrete values),不似解析解为一连续的分布,而且因为经过上述简化的动作,所以可以想见正确性将不如解析法来的好。
1.2 解析解(Analytic solution)
解析解简单的可以理解为手动求出的最终公式。解析解是一种包含分式、三角函数、指数、对数甚至无限级数等基本函数的解的形式。用来求得解析解的方法称为解析法,解析法即是常见的微积分技巧,例如分离变量法等。解析解为一封闭形式(closed-form)
的函数,因此对任一独立变量,我们皆可将其带入解析函数求得正确的相依变量。因此,解析解也被称为闭合解(closed-form solution)
。
1.3 综述
解析解就是给出解的具体函数形式,从解的表达式中就可以算出任何对应值;数值解就是用数值方法求出解,给出一系列对应的自变量和解。
- 举个栗子,有一个函数为
x
2
=
5
x^2=5
x2=5的方程,那么它的解为:
解析解: x = 5 1 / 2 x = 5^{1/2} x=51/2, 即通过公式手动推得;
数值解: x = 2.236 x=2.236 x=2.236,为一个近似解。