永磁同步电机-各个坐标系下的电压方程

1.自然坐标系下PMSM 的三相电压方程为

2.同步旋转坐标系 (d-q )下的定子电压方程

稳态下d-q轴电压方程:



3.静止坐标系(α-β)下的基本方程

静止坐标系(α-β)下电压方程

利用反Park变换,将式1-27变换到静止坐标系下的方程,可得到

式(1- 34)是电励磁同步电机通用的数学模型。

 也可写成反电动势形式:

当 Ld= Lq = Ls, 时,为表贴式 PMSM 的数学模型;当 ψf=O 时,则为同步磁阻电机的数学模型。另外,相比式(1- 30) 中有两项包含转子的位置信息,式(1- 34)更易于后期无传感器控制算法的设计。

静止坐标系下的电磁转矩方程可表示为

静止坐标系下的电流方程

参考:现代永磁同步电机控制原理及MATLAB仿真__袁雷编著

### 永磁同步电机在三相坐标系下的数学模型 永磁同步电机(PMSM)的三相坐标系中的数学模型主要描述了电机内部电气变量之间的关系。该模型对于理解电机的工作原理以及设计控制器至关重要。 #### 电压方程 在三相静止坐标系(abc坐标系)下,PMSM的电压方程可以表示为: \[ v_a = R_s i_a + L_d \frac{di_a}{dt} - ω_e (L_q - L_d)i_b \sin(\theta_m) + e_{ab}\cos(\theta_m) \] \[ v_b = R_s i_b + L_d \frac{di_b}{dt} - ω_e (L_q - L_d)i_c \sin(\theta_m-\frac{2\pi}{3}) + e_{bc}\cos(\theta_m-\frac{2\pi}{3}) \] \[ v_c = R_s i_c + L_d \frac{di_c}{dt} - ω_e (L_q - L_d)i_a \sin(\theta_m+\frac{2\pi}{3}) + e_{ca}\cos(\theta_m+\frac{2\pi}{3}) \] 其中 \(v_a, v_b, v_c\) 是定子绕组上的瞬时电压;\(i_a, i_b, i_c\) 表示流过各相线圈的电流;\(R_s\) 和 \(L_d, L_q\) 分别代表定子电阻和直轴/交轴自感[^2]。 上述表达式考虑到了由于转子磁场相对于定子旋转而产生的感应电动势(electromotive force),即所谓的反电势(back EMF)。 #### 转矩方程 电磁转矩(Te)可以通过下面的关系来计算: \[ T_e=\frac{3}{2}p_n[\psi'_d(i_q\lambda_d-i_d\lambda_q)+\psi'_q(i_d\lambda_d+i_q\lambda_q)] \] 这里 \(T_e\) 是由气隙磁通密度变化引起的平均电磁力矩; \(p_n\) 是极对数; \(\psi'\_d,\psi'\_q\) 分别指代修正后的直轴和交轴磁链; \(\lambda_d,\lambda_q\) 则对应于每单位安培直流励磁所产生的直轴和交轴磁化强度[^3]。 为了简化分析过程并实现更有效的控制系统设计,在实际应用中通常会采用Park变换将这些复杂的非线性微分方程转换到dq0坐标系中去处理。 ```matlab % MATLAB code snippet to demonstrate Park transformation from abc frame to dq0 frame. function [id,iq]=parkTransformation(ia,ib,ic,theta) % Convert three-phase currents into two-axis components using park transform matrix id=ia*cos(theta)+ib*cos(theta-2*pi/3)+ic*cos(theta+2*pi/3); iq=-ia*sin(theta)-ib*sin(theta-2*pi/3)-ic*sin(theta+2*pi/3); end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值