尝试搜集了一下自动驾驶任务中有关“车道线检测”的工作-整理

尝试写一个整理

11.15-12.02 :尝试搜集车道线检测部分论文
12.01-12.06 :搜集半监督方向论文
12.06-12.11 :搜集跟踪方向论文并阅读总结
12.12-12.12 :开始着手文字编辑:摘要和检测部分

abstract

自动驾驶任务是一个极其复杂的多任务协作工程,包括但不限于视觉感知任务、激光雷达感知任务、感知融合任务、机械整装任务、智能控制任务、路径规划任务等多个模块。一般地,普遍认为智能驾驶技术在近几年有了一个比较大的突破是因为智能感知任务部分的技术日趋成熟。车道线检测无疑是视觉感知任务中一个重要组成部分,准确的车道线检测技术可为整个自动驾驶系统提供可靠的信息指导,从而流畅而安全地完成整个任务流程。

因为人们对“衣食住行”中的“行”这一基本需求的依赖,从经典的霍夫变换到现在火热的深度学习技术,几乎随着计算机视觉升级与更迭后的每一代前沿技术,都被试应用在了车道线检测跟踪中。鉴于车道线检测任务的重要性,我们梳理了最近的一些工作,将它们按照上一层级的技术任务进行归纳,方便读者对车道线检测任务有一个全局的认识,以进行进一步的创新。

1. Introduction

车道线的跟踪任务的上一层级归属于跟踪任务,所以我们按照跟踪任务的基本构型分类,即two-step和one-shot两种形式。

1.1 two-step

一般地,two-step形式的车道线跟踪方法被分为两个部分:车道线检测部分以及跟踪部分......

1.1.1 检测部分

车道线像素级分割

[1]提出了一种基于DBSCAN的多任务框架,该框架利用DBSCAN对鸟瞰图像中属于同一车道实例的像素进行像素级多标签预测和聚类。它还增加了一项辅助任务:消失点估计,以提高车道标志检测的稳定性。[2]提出了一种端到端联合语义分割和特征嵌入网络架构。同一车道标记上的像素被分配了相同的实例ID。[3]针对车道标志检测问题,设计了一个实例分割网络。与[2]不同的是,[3]分别为每个车道标记预测了概率图,并使用三次样条对其进行拟合。代替使用像素分类,[4]引入了行分类体系结构。对于每一行,它预测图像中车道标志最可能的网格,并通过后处理恢复车道标志实例。[5]提出了一种基于CycleGAN的车道检测方法,以提高微光条件下的车道检测性能。[6]提出了一种基于EL-GAN的车道标线检测方法,该方法利用产生器对车道标线进行分割,利用鉴别器对分割结果进行细化。[7]通过迫使浅层从深层学习丰富的上下文特征,提出了一种车道标线分割任务的自注意提炼方法。

车道线衍生替代物检测

这是我个人比较喜欢的一类车道线检测技术形式,该类技术致力于寻找一种车道线衍生的替代物,并对该替代物进行检测后获取车道线的准确描述以获得优于基于像素分割方法的运行时间消耗。[8]提出了一种基于锚点的前视摄像机车道标线检测模型。在图像的垂直轴上均匀采样车道标志,通过预测每个样本点与锚线之间的偏移量进行密集回归,然后应用非最大抑制(NMS)抑制重叠检测,选择得分最高的车道标志。[9]将车道标记检测表述为图像每行的像素分类问题。预测特定的特征地图以指示每行上车道标志的位置。[10]认为复杂的车道线形状需要高维的CNN输出来对全局结构进行建模,这进一步增加了对模型容量和训练数据的需求。相反,车道标志的位置具有有限的几何变化和空间覆盖。所以将车道线检测任务视为一种对关键点检测的问题,利用人体关键点检测技术中自下而上的形式对车道线中划分的关键点进行热图形式的回归。用两个独立的头部来建模低复杂度的局部模式,第一个头部预测关键点的存在,第二个头部细化局部范围内关键点的位置并将同一车道线上的关键点关联起来。[11]和[12]都是以线来表示车道线的,[11]假设在某些情况下全局信息可能对推断其位置至关重要,特别是在诸如遮挡、车道标记丢失等情况下。因此提出了一种新的基于锚点的注意机制。[12]提出了一个端到端的系统,称为Line-CNN(L-CNN),其中的关键部分是一个新颖的线路建议单元(LPU)。LPU利用线路方案作为参考来定位准确的交通曲线,这迫使系统学习整个交通线路的全局特征表示。

1.1.2 跟踪部分

经典卡尔曼滤波算法[13] ......

1.2 one-shot

......

2. 参考文献

[1] Vpgnet: Vanishing point guided network for lane and road marking detection and recognition. 
[2] Towards end-to-end lane detection: an instance segmentation approach.
[3] Spatial as deep: Spatial cnn for traffic scene understanding.
[4] End-to-end lane marker detection via row-wise classification.
[5] Lane detection in low-light conditions using an efficient data enhancement: Light conditions style transfer.
[6] El-gan: Embedding loss driven generative adversarial networks for lane detection.
[7] Learning lightweight lane detection cnns by self attention distillation.
[8] Zhenpeng Chen, Qianfei Liu, and Chenfan Lian. Point-lanenet: Efficient end-to-end cnns for accurate real-time lane detection. 
[9] 论文作者知乎论文解读以及对评论的回复:超快的车道线检测 - 知乎
[10] Zhan Qu, Huan Jin, Yang Zhou, Zhen Yang, Wei Zhang. Focus on Local: Detecting Lane Marker from Bottom Up via Key Point
[11] Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection
[12] Line-CNN: End-to-End Traffic Line Detection With Line Proposal Unit
[13] 卡尔曼滤波相关:卡尔曼滤波:究竟滤了谁?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白 AI 日记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值