ChatGLM 微调实战

在之前的文章中,我们已经讲过了 ChatGPT 的三个主要流程:

  1. SFT:通过 Instruction Tuning 来微调一个监督学习模型。
  2. Reward Model:通过排序序列来训练一个打分模型。
  3. Reinforcement Learning:通过强化学习来进一步优化模型。

何枝:【RLHF】想训练ChatGPT?得先弄明白Reward Model怎么训(附源码)388 赞同 · 31 评论文章正在上传…重新上传取消

前两篇文章主要对 RM 和 RL 两部分进行了讲解和实验,

但无数的经验向我们证明 —— 拥有一个好的 SFT 的模型对后两步的训练至关重要。

由于在 RL 训练过程中会加入与 SFT 模型的相似度(KL-Divergence)惩罚,

这意味着 RL 模型的上限很大程度上取决于 SFT 模型。

为此,我们今天来重点讲一讲如何通过 ChatGLM 来微调一个读懂我们指令的模型。

1. GLM Backbone

Paper Link:  arxiv.org/pdf/2103.1036

在讲微调代码之前,我们先来看看 GLM 的基本架构。

我们都知道,目前主流的两种 Backbone:一类是以 BERT 为首的 Encoder 架构(双向注意力),另一种是以 GPT 为首的 Decoder 架构(单向注意力)。

这两种架构各有各的好处,一个更适合做理解,一个更适合做生成。

那么如何将这两种模型做合并,集二者优势于一身,是近年来人们一直在尝试的努力(如:T5、BART等)。

不同于 Encoder-Decoder 的堆叠,GLM 通过一种巧妙的 2D Position Embedding,并通过 Attention MASK 来使得模型在训练时 「既能在部分内容上存在双向注意力」「又能在生成任务中保持单向注意力」。

以下是 GLM 示意图:

GLM Position Embedding 示意图

  1. 首先,从原始句子中 Random Sample 出来一些 Span 用于并 [MASK] 掉(该思想源自 BERT),注意:这里是以 Span 维度进行 MASK 的。
  2. 将原句子分为两组,PART A 是原句子,只不过句子中被挑选出来的 Span 用 [MASK] 符号代替;PART B 是挑选出来的 Span 集合。
  3. 将挑选出来的 MASK Span 集合(PART B)拼接在原句子(PART A)后面,注意:这里是先对 PART B 做乱序后,再拼接到句子后面(目的是为了训练 Position Embedding)。
  4. 设计 2D Position:这是我认为比较有趣的设定,位置编码分成了两组。一组用于表征「全局位置」,被挑选出的「MASK SPAN」中的所有 token 的位置索引都等于整个 Span 在原句子中的位置(例如:x5, x6 的索引都是 5);而另一组用来专门表征 MASK Span 内部 token 的相对位置编码(例如:x5, x6 的索引这两个 token 在 Mask Span 中的相对位置)。
  5. 通过设置 Attention MASK,使得 PART A 中的内容是双向可见的,且 PART B 中所有 token 也可以看到 Part A 中的内容;而对于 PART B 中的内容保持单向可见。
  6. 通过对 Part B 中的内容做「生成任务」来进行模型迭代。

以上便是我认为 GLM 中最关键的几个点。

2. Finetune GLM

2.1 数据集准备

我们以信息抽取任务为例,将一个信息抽取数据集(DuIE)添加上 Instruction,以此来教会 ChatGLM 根据我们的指令来完成抽取任务。

我们仿照 Alpaca 数据集,将数据结构设为以下形式:

{
    "instruction": "你现在是一个很厉害的阅读理解器,找到句子中的三元组信息并输出成json给我。",
    "input": "九玄珠是在纵横中文网连载的一部小说,作者是龙马。",
    "target": "```json\n[{\"predicate\": \"连载网站\", \"object_type\": \"网站\", \"subject_type\": \"网络小说\", \"object\": \"纵横中文网\", \"subject\": \"九玄珠\"}, {\"predicate\": \"作者\", \"object_type\": \"人物\", \"subject_type\": \"图书作品\", \"object\": \"龙马\", \"subject\": \"九玄珠\"}]\n```"
}

进一步的,我们将 instruction 和 input 字段合并,得到如下数据:

{
    "context": "Instruction: 你现在是一个很厉害的阅读理解器,找到句子中的三元组信息并输出成json给我:。\nInput: 九玄珠是在纵横中文网连载的一部小说,作者是龙马。\nAnswer: ", 
    "target": "```json\n[{\"predicate\": \"连载网站\", \"object_type\": \"网站\", \"subject_type\": \"网络小说\", \"object\": \"纵横中文网\", \"subject\": \"九玄珠\"}, {\"predicate\": \"作者\", \"object_type\": \"人物\", \"subject_type\": \"图书作品\", \"object\": \"龙马\", \"subject\": \"九玄珠\"}]\n```"
}

其中,

  • Instruction:存放我们希望模型做的任务的指令
  • Input:存放我们喂给模型的任务数据
  • Target:存放模型的输出标签

2.2 Label 构建

将数据集解析为训练 label 的代码如下:

def convert_example(
        examples: dict, 
        tokenizer,
        max_source_seq_len: int,
        max_target_seq_len: int,
    ):
    """
    将样本数据转换为Ptuning模型接收的输入数据。

    Args:
        examples (dict): 训练数据样本, e.g. -> {
                                                "text": [
                                                            '{"context": "年基准利率4.35%。从实际看...", "target": "2017年银行贷款基准利率"}',
                                                            ...
                                                ]
                                            }
        max_source_seq_len (int): prompt最大长度
        max_target_seq_len (int): 答案最大长度

    Returns:
        dict (str: np.array) -> tokenized_output = {
                            'input_ids': [[1525, 10, ...], [758, 2345, ...]], 
                            'labels': [[822, 10, ...], [125, 58...]]
                        }
    """
    tokenized_output = {
        'input_ids': [],
        'labels': []
    }

    max_seq_length = max_source_seq_len + max_target_seq_len

    for example in examples['text']:
        try:
            example = json.loads(example)
            context = example["context"]
            target = example["target"]

            prompts_ids = tokenizer.encode(
                text=context,
                add_special_tokens=False
            )

            target_ids = tokenizer.encode(
                text=target,
                add_special_tokens=False
            )                    

            if len(prompts_ids) >= max_source_seq_len:                                          # source 需要留一个 [gMASK] token 在结尾
                prompts_ids = prompts_ids[:max_source_seq_len - 1]

            if len(target_ids) >= max_target_seq_len - 1:                                       # target 需要留一个 <sop> 在开头和一个 <eop> token 在结尾
                target_ids = target_ids[:max_target_seq_len - 2]

            input_ids = tokenizer.build_inputs_with_special_tokens(prompts_ids, target_ids)     # source_ids + [gMASK] + <sop> + target_ids + <eop>
            context_length = input_ids.index(tokenizer.bos_token_id)                            # bos 在 target 的第一位
            mask_position = context_length - 1                                                  # [gMASK] 在 source 的最后一位
            labels = [-100] * context_length + input_ids[mask_position + 1:]                    # 从 bos 开始到后面所有的 target 到 eos 都为 label

            pad_len = max_seq_length - len(input_ids)
            input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
            labels = labels + [-100] * pad_len

            tokenized_output['input_ids'].append(input_ids)
            tokenized_output['labels'].append(labels)
        except:
            print(f'"{example}" -> {traceback.format_exc()}')
            continue

    for k, v in tokenized_output.items():
        tokenized_output[k] = np.array(v)

    return tokenized_output

其中,

  • max_source_seq_len 用于设定模型接收的最大输入长度
  • max_target_seq_len 用于设定模型输出的最大长度

2.3 模型训练

ChatGLM 的微调存在 LoRA Finetune 和 P-Tuning 两种微调方式。

P-Tuning V.S. LoRA

这两种方式都可以使得 ChatGLM-6B 的模型能在 32G 的 V100 上进行微调训练。

通过以下两种参数配置即可选择使用 P-Tuning 还是 LoRA:

# LoRA Finetune
python train.py \
    --train_path data/mixed_train_dataset.jsonl \
    --dev_path data/mixed_dev_dataset.jsonl \
    --use_lora True \
    --lora_rank 8 \
    --batch_size 1 \
    --num_train_epochs 2 \
    --save_freq 1000 \
    --learning_rate 3e-5 \
    --logging_steps 100 \
    --max_source_seq_len 400 \
    --max_target_seq_len 300 \
    --save_dir checkpoints/finetune \
    --img_log_dir "log/fintune_log" \
    --img_log_name "ChatGLM Fine-Tune" \
    --device cuda:0


# P-Tuning
python train.py \
    --train_path data/mixed_train_dataset.jsonl \
    --dev_path data/mixed_dev_dataset.jsonl \
    --use_ptuning True \
    --pre_seq_len 128 \
    --batch_size 1 \
    --num_train_epochs 2 \
    --save_freq 200 \
    --learning_rate 2e-4 \
    --logging_steps 100 \
    --max_source_seq_len 400 \
    --max_target_seq_len 300 \
    --save_dir checkpoints/ptuning \
    --img_log_dir "log/fintune_log" \
    --img_log_name "ChatGLM P-Tuning" \
    --device cuda:0

其中,pre_seq_len 是指在每个层前面添加多少个可学习的前缀 token,该值设置的越大显存占用也会越大。

在我们的实验下,两种方式的效果差异不大:

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
回答: ChatGLM2-6B是一个AI模型,引用提到了对ChatGLM2-6B进行P-tuning微调的过程。微调是指在已有的预训练模型基础上,使用特定的数据集进行进一步的训练,以提高模型在特定任务上的性能。在这个例子中,ChatGLM2-6B通过本地部署和本地微调的方式被成功跑通了。具体来说,本地部署是指将模型部署到本地环境中进行使用,而本地微调是指在本地环境中使用特定的数据集对模型进行微调训练。引用中提到了在Windows系统上跑通了ChatGLM2-6B。引用则提到了进行微调时可以更换模型路径以及注意微调目前只支持单轮对话的回复。总之,ChatGLM2-6B经过微调可以在特定任务上表现更好。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [ChatGLM2-6B! 我跑通啦!本地部署+微调(windows系统)](https://blog.csdn.net/m0_54515450/article/details/131617081)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *3* [ChatGLM2-6B、ChatGLM-6B 模型介绍及训练自己数据集实战](https://blog.csdn.net/dream_home8407/article/details/130099656)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值