论文笔记:LSTPrompt: Large Language Models as Zero-Shot Time Series Forecastersby Long-Short-Term Prompt

本文介绍了一种新的时间序列预测方法,LSTPrompt,它通过分解任务(TimeDecomp)和引入节奏调整(TimeBreath)来优化大模型对时间序列数据的处理。实验表明,这种方法在零样本预测任务中表现出色,特别是在大模型未见过的数据上。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

202402 arxiv

1 intro

1.1 大模型+时间序列预测

  • 一般有两种类型的方法
    • 使用海量时间序列数据重新训练一个时间序列领域的大模型
    • 直接利用现有的大模型,设计prompt,将时间序列数据转换成大模型理解的文本,实现时间序列预测
      • 代价小+有成熟的可供使用的大模型

1.2 本文思路

  • 之前的方法大多集中在如何将时间序列数据转换成文本上
    • 将时间序列的数字直接当成文本处理
    • 将时间序列翻译成上涨或下跌这种文本,输入到NLP大模型中,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值