2024 ICML
1 嵌入维度坍塌现象
- 嵌入维度坍塌 (Dimensional Collapse) 指的是,在一个高维空间中,推荐模型的很多特征的嵌入表征只支撑起一个低维的子空间。
- 如果只是简单地将每个特征的嵌入表征的长度拉长,虽然模型的参数量会线性增大,但是由于大部分特征的有效维度很小,导致模型效果提升幅度不大,甚至有所下降
- 同时,论文基于奇异值分解对模型学习到的嵌入矩阵进行谱分析,发现大多数嵌入矩阵的奇异值衰减很快,即大多数特征的嵌入矩阵是低秩的。
2 交叉坍塌定律
论文随后提出了信息丰度和交叉坍塌定律(这里略)
3 方法
- 提出了多嵌入范式 (Multi-Embedding Paradigm)
- 为所有的特征 ID 学习多套嵌入表征,并且基于每套嵌入表征学习独立的专家网络
- 最后基于MoE 输出最终预估值