论文略读:On the Embedding Collapse When Scaling Up Recommendation Models

2024 ICML

1 嵌入维度坍塌现象

  • 嵌入维度坍塌 (Dimensional Collapse) 指的是,在一个高维空间中,推荐模型的很多特征的嵌入表征只支撑起一个低维的子空间。
    • 如果只是简单地将每个特征的嵌入表征的长度拉长,虽然模型的参数量会线性增大,但是由于大部分特征的有效维度很小,导致模型效果提升幅度不大,甚至有所下降
  • 同时,论文基于奇异值分解对模型学习到的嵌入矩阵进行谱分析,发现大多数嵌入矩阵的奇异值衰减很快,即大多数特征的嵌入矩阵是低秩的

2 交叉坍塌定律

论文随后提出了信息丰度和交叉坍塌定律(这里略)

3  方法

  • 提出了多嵌入范式 (Multi-Embedding Paradigm)
    • 为所有的特征 ID 学习多套嵌入表征,并且基于每套嵌入表征学习独立的专家网络
    • 最后基于MoE 输出最终预估值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值