论文略读:Uncovering Hidden Representations in Language Models

202502 arxiv

说一下主要结论吧

  • 对于下游任务,语言模型的中间层在所有架构和任务中始终优于最后一层
    • 这挑战了使用最后一层表示的传统观点。
  • 不同的架构表现出不同的信息压缩模式。自回归模型在中间层存在瓶颈,而双向模型则保持更均匀的趋势
      • BERT通过双向编码整个输入,通常在各层之间保持较高的熵值,这表明压缩较少
        • 模型可以一次看到所有的token,因此不需要丢弃太多信息
      • 只有解码器的Pythia展示出一个明显的中层熵值下降
        • 反映出其自回归目标在网络中部倾向于过滤或剪枝非本地细节
        • 因此,Pythia的“最佳状态”通常位于中间深度,在这里它平衡了必要的上下文和压缩
      • Mamba通过状态空间方法处理序列,导致其在深度上的曲线更为平坦和均匀
        • 它既不像BERT那样保持大量信息,也不像Pythia的中间层那样进行激烈的压缩
  • 较大的decoder-only模型表现出更明显的中间压缩
    • 这表明它们在提炼相关特征方面的能力增强
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值