论文略读:Graph Mixture of Experts and Memory-augmented Routers for Multivariate Time Series Anomaly Dete

AAAI 2025

  • 提出了 Graph-MoE,用于多变量时间序列 异常检测
    • 现有方法中常见的一个局限是 :在整个图上,GNN 本质上是“同质”的,即强制所有节点共享相同的聚合机制,而不考虑它们节点特征或邻域的差异
    • 但实际上,有些节点可能青睐于更远距离的信息聚合,有些则青睐于更近邻居的信息聚合

实验结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值