文章目录
采样一致性(SAC-IA)为代表的基于特征匹配的配准算法和以正态分布变换(NDT)为代表的基于统计学概率的算法 ,SAC-IA是一种粗配准方法,NDT为精配准算法,但是它对两片点云的初始位姿不如ICP算法敏感。粗配准后的两片点云,它们的实际位姿偏差已经大幅减小,但是对于实际应用来说,这还远远达不到要求。因此,在点云粗配准之后,我们还需要对点云进行精配准。
一、算法原理
1.SAC-IA算法
SAC-IA(Sample Consensus Initial Aligment,SAC-IA)粗配准算法是一种基于局部特征描述子的点云粗配准算法,其需要计算点云的快速点特征直方图(FPFH)来保持对应点对之间的相似关系,根据相似关系来搜索点云中的对应点。其基本原理是采用采样一致性的思想,通过查看大量的点对对应关系来计算点云之间的刚体变换矩阵,并将最小配准误差对应的变换矩阵记为最佳变换矩阵。SAC-IA 算法基于 FPFH 特征描述子寻找对应点对,因此同样具有点云旋转不变性的特点,同时对于点云噪声和密度具有鲁棒性,并且对于初始位姿相差较大的两片点云也能得到较好的初始配准效果。具体步骤参看
本文介绍了基于SAC-IA和NDT的点云配准方法。SAC-IA用于粗配准,NDT用于精配准。SAC-IA利用FPFH特征寻找对应点对,而NDT通过概率分布函数求解刚体变换,对初始位姿变化有较好适应性。实验结果显示,两种算法结合能有效完成点云配准,但NDT参数调整困难,且精度稍逊于ICP。
订阅专栏 解锁全文
20万+

被折叠的 条评论
为什么被折叠?



