机器人控制算法——移动机器人横向控制最优控制LQR算法

本文详细介绍了线性二次型调节器(LQR)在移动机器人横向控制中的应用。通过车辆运动学模型,分析了两轮差速驱动模型,并进行了坐标变换和线性化处理。接着,阐述了LQR算法的实现步骤,包括矩阵离散化、Q和R矩阵设定以及Riccati方程的求解。内容还包括作者的相关工作,如自动驾驶领域的LQR工程实践。
摘要由CSDN通过智能技术生成

1.Introduction
LQR (外文名linear quadratic regulator)即线性二次型调节器,LQR可得到状态线性反馈的最优控制规律,易于构成闭环最优控制。LQR最优控制利用廉价成本可以使原系统达到较好的性能指标(事实也可以对不稳定的系统进行整定) ,而且方法简单便于实现 ,同时利用 Matlab 强大的功能体系容易对系统实现仿真。
之前已经在自动驾驶汽车上工程落地,参见自动驾驶——最优控制算法(LQR)工程化总结
与上次不同的是,此次被控对象是移动机器人,两轮差速模型,差速模型原理参见另一篇机器人控制算法——两轮差速驱动运动模型
2. Implment LQR Algorithm for Differential Drive Motion

车辆运动学模型是根据车辆的几何关系建立的,不考虑影响车辆运动的力。以车辆后轴中点作为研究对象,在惯性坐标系OXY下,车辆运动状态可用车辆坐标(x,y)和车身航向角。v为车辆纵向行驶速度,如下图所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jack Ju

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值