Cellranger-单细胞测序数据表达定量

Cellranger-单细胞测序数据表达定量

1、Cellranger安装

2、参考基因组下载

3、表达定量

1、Cellranger软件安装

首先进去Cellranger官网进行简单注册,随后根据将其下载到自己的服务器中 Cellranger官网

image-20241025141003299

conda activate base
wget -O cellranger-8.0.1.tar.gz "https://cf.10xgenomics.com/releases/cell-exp/cellranger-8.0.1.tar.gz?Expires=1729879664&Key-Pair-Id=APKAI7S6A5RYOXBWRPDA&Signature=YVKVK113B0AImruKKjdFbTZcUKTGJOY6T-r5j41L9sSxdDoWDQCFoXr-0MdRXoCx5d0ud61bLzZ-vg7vpQXkMYk~Z0CEQqCpFhhkoEeBvzF4RVdyBr2aBosaMAq95firdEhAlzxD-~y0mpXsjO7DjFavsZTUOMPjvu5V9-eaT8ItbnDR06ZkuPi1RoKm3Wv2nrDmz4CJUIUs2vn7YPlZ9-beN6UidysA7WHT86ofcxJX0aPGUvi4t6yLaXaK8ZeTpSvii-wEtaiaXDXBOuo6plhy6hMzAZMS6fYv72oFXHSwPUT8WW6bZaBf8OLkKj6W3hQO5QE5xb1QnbcEXT3d~Q__"
# 官网也提供curl下载

# 检查md5sum值是否完整
md5sum cellranger-8.0.1.tar.gz
# 解压并安装
tar -zxvf cellranger-8.0.1.tar.gz
# 将cellranger添加到环境变量
vim ~/.bashrc
export PATH=/yourpath/cellranger-8.0.1:$PATH # yourpath为你的软件路径
source ~/.bashrc

image-20241025143303812

在终端当中输入cellranger命令检测是否安装成功,出现以下内容即为安装成功

image-20250620135031189

2、下载参考序列

官方提供了几个参考序列,包括人类,小鼠,大鼠和V(D)J参考序列

# Human reference (GRCh38) - 2024-A
wget "https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2024-A.tar.gz"
# Mouse reference (GRCm39) - 2024-A
wget "https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCm39-2024-A.tar.gz"
# Rat reference (mRatBN7.2) - 2024-A
wget "https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-mRatBN7-2-2024-A.tar.gz"

# Human V(D)J reference (GRCh38)
wget "https://cf.10xgenomics.com/supp/cell-vdj/refdata-cellranger-vdj-GRCh38-alts-ensembl-7.1.0.tar.gz"

# 解压缩
tar -zxvf refdata-gex-GRCh38-2024-A.tar.gz

根据自己的研究需求进行下载

3、原始测序数据下载

可以选择GEO或者NGDC的GSA for Human下载原始数据,此处以GSA为例HRA003293,数据需要申请,可以选择open开放数据

wget -r -nH --cut-dirs=2 --ftp-user=name --ftp-password=password ftp://download.big.ac.cn/gsa-human/HRA003293/ 
<think>我们正在讨论的是使用CellRanger multi进行单细胞免疫组库定量,特别是多个样本如何运行。根据用户的问题,我们需要解释如何配置和运行cellrangermulti来处理多个样本的免疫组库数据。关键点:1.Cell Rangermulti是10x Genomics提供的用于同时分析多个文库类型(例如基因表达和免疫组库)的工具。2.对于免疫组库分析,通常包括V(D)J测序数据,而multi可以同时处理来自同一个细胞的基因表达和V(D)J数据。3.当有多个样本时,我们需要为每个样本准备单独的fastq文件,并在配置文件中指定每个样本对应的文库。步骤:1.准备输入文件:每个样本的fastq文件(可能包括基因表达和V(D)J测序数据)。2.创建一个配置文件(CSV格式),其中指定每个样本的文库类型、测序类型、样本名称以及fastq文件路径。3.运行cellranger multi命令,指定配置文件和参考基因组。注意:对于免疫组库分析,我们通常需要两个文库:一个是基因表达(GeneExpression),另一个是V(D)J(VDJ)。在同一个样本中,这两个文库可能来自同一个细胞,但经过不同的建库方式。配置文件示例:假设我们有两个样本:sample1和sample2,每个样本都有两个文库:基因表达和VDJ。配置文件(multi_config.csv)内容如下: ```[gene-expression]reference,/path/to/refdata-gex-GRCh38-2020-A[vdj]reference,/path/to/refdata-vdj-GRCh38-alts-ensembl-5.0.0[libraries]fastq_id,fastqs,feature_typessample1_gene_exp,/path/to/sample1/gene_exp_fastq,Gene Expressionsample1_vdj,/path/to/sample1/vdj_fastq,VDJsample2_gene_exp,/path/to/sample2/gene_exp_fastq,Gene Expressionsample2_vdj,/path/to/sample2/vdj_fastq,VDJ```然后运行命令:```cellranger multi--id=multi_output --csv=multi_config.csv```解释: -[gene-expression]部分指定基因表达参考基因组路径。 -[vdj]部分指定VDJ参考基因组路径。- [libraries]部分列出每个样本的文库,包括fastq文件所在目录和文库类型(GeneExpression或VDJ)。注意:每个样本的基因表达和VDJ文库的fastq文件应该放在不同的目录下,并在配置文件中分别指定。另外,如果同一个样本的基因表达和VDJ数据来自同一次测序(即同一个fastq文件),那么通常不需要分开,但是10x的VDJ分析通常要求单独的文库。因此,一般建议分开建库。如果用户有多个样本,每个样本都有多个文库(比如多个基因表达文库),也可以在同一配置文件中指定,但需要确保每个文库的fastq_id唯一。输出:运行完成后,会在输出目录(multi_output)中生成每个样本的分析结果,包括基因表达和VDJ的整合结果。引用说明:根据用户提供的引用,我们并没有直接关于cellrangermulti的引用,但是引用[5]提到了kbcount(kallisto|bustools)的使用,而这里我们讨论的是CellRanger,所以不直接引用。因此,我们主要基于10xGenomics的官方文档进行回答。由于用户要求参考站内引用,但提供的引用中没有直接相关的,所以我们可以不添加引用标识,或者如果用户有提到相关的内容,我们可以适当关联。但在此问题中,用户提供的引用[3]提到了单细胞测序的广度和深度的权衡,而CellRanger multi可以同时处理多个样本,这有助于提高广度(多个样本)和深度(整合多个文库)。因此,我们可以适当关联。因此,在回答中我们可以提到:根据引用[3],单细胞测序的广度是指同时测序的细胞、组织或样品的数量。使用cellrangermulti可以同时分析多个样本,从而增加分析的广度。相关问题:根据用户要求,我们需要生成相关问题。因此,回答结构如下:1.解释cellrangermulti处理多个样本的基本方法。2.给出配置文件的示例和运行命令。3.适当关联引用[3]。4.生成相关问题。</think>### Cell Ranger Multi进行单细胞免疫组库定量(多样本运行) 使用Cell Ranger Multi进行单细胞免疫组库定量时,多样本运行需通过**配置文件**统一管理样本和文库信息。以下是关键步骤: #### 1. **创建配置文件(CSV格式)** 配置文件需包含: - 参考基因组路径 - 每个样本的文库类型(基因表达/VDJ) - FASTQ文件路径 - 样本ID 示例配置文件 `multi_config.csv`: ```csv [gene-expression] reference,/path/to/refdata-gex-GRCh38-2020-A [vdj] reference,/path/to/refdata-vdj-GRCh38-alts-ensembl-5.0.0 [libraries] fastq_id,fastqs,feature_types,sample sample1_GEX,/path/to/sample1_gex_fastq,Gene Expression,sample1 sample1_VDJ,/path/to/sample1_vdj_fastq,VDJ-T,sample1 sample2_GEX,/path/to/sample2_gex_fastq,Gene Expression,sample2 sample2_VDJ,/path/to/sample2_vdj_fastq,VDJ-T,sample2 ``` #### 2. **运行命令** ```bash cellranger multi --id=multi_output \ --csv=multi_config.csv \ --localcores=8 \ --localmem=64 ``` - `--id`:输出目录名 - `--csv`:配置文件路径 - `--localcores/--localmem`:计算资源分配 #### 3. **关键配置说明** - **文库类型**:免疫组库需指定`VDJ-T`(T细胞)或`VDJ-B`(B细胞) - **样本标识**:`sample`列确保数据按样本分组 - **数据整合**:Cell Ranger自动关联同一细胞的基因表达和VDJ序列 - **输出结构**:结果包含: - 每个样本的VDJ克隆型(`clonotypes.csv`) - 细胞-抗原受体对应表(`all_contig_annotations.csv`) - 整合的基因表达矩阵(`filtered_feature_bc_matrix`) #### 4. **注意事项** - **FASTQ文件组织**:建议按样本分目录存放,避免路径错误 - **参考基因组**:需分别指定基因表达(`gene-expression`)和VDJ(`vdj`)的参考 - **样本数量**:支持数十个样本并行处理,但需确保足够内存 - **批次效应**:若样本来自不同批次,后续需整合分析(如引用[1]提到的批次校正方法) > **引用关联**:单细胞多组学整合分析(如基因表达+免疫组库)可提升生物学见解的完整性,但需注意不同技术平台的数据整合挑战(引用[4])。实验设计时需权衡测序**广度**(细胞数)与**深度**(转录本覆盖度),这对免疫组库的克隆型检测灵敏度至关重要(引用[3])。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值