接下来就是用 cell ranger 软件进行分析,但是有一个前提,需要我们注意,系统性能要非常好,一般不太需要我们去做,很多文章都说这儿只需要了解一下,知道大概流程就行。
系统要求:
Linux 至少8核
CPU(推荐16核)64GB
RAM(推荐128GB),最低配的64G,允许cellranger aggr合并最多250k个细胞
1T硬盘
64-bit CentOS/RedHat 6.0 or Ubuntu 12.04
cell ranger 软件分为下面四大部分:
cellranger mkfastq : 它借鉴了Illumina的bcl2fastq ,可以将一个或多个lane中的混样测序样本按照index标签生成样本对应的fastq文件
cellranger count :利用mkfastq生成的fq文件,进行比对(基于STAR)、过滤、UMI计数。利用细胞的barcode生成gene-barcode矩阵,然后进行样本分群、基因表达分析
cellranger aggr :接受cellranger count的输出数据,将同一组的不同测序样本的表达矩阵整合在一起,比如tumor组原来有4个样本,PBMC组有两个样本,现在可以使用aggr生成最后的tumor和PBMC

本文介绍了cell ranger软件在单细胞测序数据分析中的应用,包括mkfastq、count、aggr和reanalyze四个主要步骤。重点强调了cellranger count生成的gene-barcode矩阵对后续Seurat、Scater、Monocle等分析的重要性,以及如何获取参考基因组和处理输出文件。
最低0.47元/天 解锁文章
9676

被折叠的 条评论
为什么被折叠?



