Py之pycocotools:pycocotools库的简介、安装、使用方法之详细攻略续篇

这篇博客介绍了pycocotools库,它是COCO数据集的Python API,用于目标检测、分割等任务。内容包括库的简介、安装方法和使用示例,如加载COCO数据集、获取特定类别信息、显示图像及注释,并进行了图像的可视化操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 Py之pycocotools:pycocotools库的简介、安装、使用方法之详细攻略

目录

pycocotools库的简介

pycocotools库的安装

pycocotools库的使用方法

1、from pycocotools.coco import COCO

2、输出COCO数据集信息并进行图片可视化


pycocotools库的简介

       pycocotools是什么?即python api tools of COCO。COCO是一个大型的图像数据集,用于目标检测、分割、人的关键点检测、素材分割和标题生成。这个包提供了Matlab、Python和luaapi,这些api有助于在COCO中加载、解析和可视化注释。请访问COCO - Common Objects in Context,可以了解关于COCO的更多信息,包括数据、论文和教程。COCO网站上也描述了注释的确切格式。Matlab和PythonAPI是完整的,LuaAPI只提供基本功能。
       除了这个API,请下载COCO图片和注释,以便运行演示和使用API。两者都可以在项目网站上找到。

  • -请下载、解压缩并将图像放入:coco/images/
  • -请下载并将注释放在:coco/annotations中/

COCO API http://cocodataset.org/

pycocotools库的安装

pip install pycocotools==2.0.0



# 网友燕尾服假面 2023.04.11提供
conda install -c conda-forge pycocotools

pycocotools库的使用方法

1、from pycocotools.coco import COCO

__author__ = 'tylin'
__version__ = '2.0'
# Interface for accessing the Microsoft COCO dataset.

# Microsoft COCO is a large image dataset designed for object detection,
# segmentation, and caption generation. pycocotools is a Python API that
# assists in loading, parsing and visualizing the annotations in COCO.
# Please visit http://mscoco.org/ for more information on COCO, including
# for the data, paper, and tutorials. The exact format of the annotations
# is also described on the COCO website. For example usage of the pycocotools
# please see pycocotools_demo.ipynb. In addition to this API, please download both
# the COCO images and annotations in order to run the demo.

# An alternative to using the API is to load the annotations directly
# into Python dictionary
# Using the API provides additional utility functions. Note that this API
# supports both *instance* and *caption* annotations. In the case of
# captions not all functions are defined (e.g. categories are undefined).

# The following API functions are defined:
#  COCO       - COCO api class that loads COCO annotation file and prepare data structures.
#  decodeMask - Decode binary mask M encoded via run-length encoding.
#  encodeMask - Encode binary mask M using run-length encoding.
#  getAnnIds  - Get ann ids that satisfy given filter conditions.
#  getCatIds  - Get cat ids that satisfy given filter conditions.
#  getImgIds  - Get img ids that satisfy given filter conditions.
#  loadAnns   - Load anns with the specified ids.
#  loadCats   - Load cats with the specified ids.
#  loadImgs   - Load imgs with the specified ids.
#  annToMask  - Convert segmentation in an annotation to binary mask.
#  showAnns   - Display the specified annotations.
#  loadRes    - Load algorithm results and create API for accessing them.
#  download   - Download COCO images from mscoco.org server.
# Throughout the API "ann"=annotation, "cat"=category, and "img"=image.
# Help on each functions can be accessed by: "help COCO>function".

# See also COCO>decodeMask,
# COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds,
# COCO>getImgIds, COCO>loadAnns, COCO>loadCats,
# COCO>loadImgs, COCO>annToMask, COCO>showAnns

# Microsoft COCO Toolbox.      version 2.0
# Data, paper, and tutorials available at:  http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2014.
# Licensed under the Simplified BSD License [see bsd.txt]

2、输出COCO数据集信息并进行图片可视化

from pycocotools.coco import COCO
import matplotlib.pyplot as plt
import cv2
import os
import numpy as np
import random


#1、定义数据集路径
cocoRoot = "F:/File_Python/Resources/image/COCO"
dataType = "val2017"
annFile = os.path.join(cocoRoot, f'annotations/instances_{dataType}.json')
print(f'Annotation file: {annFile}')

#2、为实例注释初始化COCO的API
coco=COCO(annFile)


#3、采用不同函数获取对应数据或类别
ids = coco.getCatIds('person')[0]    #采用getCatIds函数获取"person"类别对应的ID
print(f'"person" 对应的序号: {ids}') 
id = coco.getCatIds(['dog'])[0]      #获取某一类的所有图片,比如获取包含dog的所有图片
imgIds = coco.catToImgs[id]
print(f'包含dog的图片共有:{len(imgIds)}张, 分别是:',imgIds)


cats = coco.loadCats(1)               #采用loadCats函数获取序号对应的类别名称
print(f'"1" 对应的类别名称: {cats}')

imgIds = coco.getImgIds(catIds=[1])    #采用getImgIds函数获取满足特定条件的图片(交集),获取包含person的所有图片
print(f'包含person的图片共有:{len(imgIds)}张')



#4、将图片进行可视化
imgId = imgIds[10]
imgInfo = coco.loadImgs(imgId)[0]
print(f'图像{imgId}的信息如下:\n{imgInfo}')

imPath = os.path.join(cocoRoot, 'images', dataType, imgInfo['file_name'])                     
im = cv2.imread(imPath)
plt.axis('off')
plt.imshow(im)
plt.show()


plt.imshow(im); plt.axis('off')
annIds = coco.getAnnIds(imgIds=imgInfo['id'])      # 获取该图像对应的anns的Id
print(f'图像{imgInfo["id"]}包含{len(anns)}个ann对象,分别是:\n{annIds}')
anns = coco.loadAnns(annIds)

coco.showAnns(anns)
print(f'ann{annIds[3]}对应的mask如下:')
mask = coco.annToMask(anns[3])
plt.imshow(mask); plt.axis('off')

### 回答1: 要安装Pythonpycocotools,可以按照以下步骤进行操作: 1. 首先,确保已经安装Python和pip。 2. 打开命令行窗口,输入以下命令安装Cython: ``` pip install Cython ``` 3. 下载pycocotools的源代码,可以从GitHub上下载: ``` git clone https://github.com/cocodataset/cocoapi.git ``` 4. 进入cocoapi/PythonAPI目录,运行以下命令: ``` python setup.py build_ext --inplace ``` 5. 运行以下命令安装pycocotools: ``` python setup.py install ``` 6. 安装完成后,可以在Python中导入pycocotools模块进行使用: ``` import pycocotools ``` 以上就是安装Pythonpycocotools的步骤。 ### 回答2: Python安装pycocotools需要经过以下几个步骤: 1.安装Cython Cython是一个Python的扩展工具,可以将Python代码转换成C语言的扩展模块。Pycocotools安装需要先安装Cython,可以通过以下命令安装: ``` pip install Cython ``` 2.下载pycocotools源码 可以从官方github下载pycocotools源码,并解压缩到任意文件夹中。 3.编译安装 进入pycocotools源码所在文件夹,执行以下命令: ``` python setup.py build_ext --inplace ``` 该命令将会编译Cython源文件,并生成扩展模块。如果没有错误,将会在当前文件夹中生成一个名为pycocotools的文件夹。 4.安装 最后一步,将pycocotools文件夹复制到Python的搜索路径下即可完成安装。可以通过以下命令查看Python的搜索路径: ``` import sys print(sys.path) ``` 找到Python的搜索路径后,将pycocotools复制到其中即可。例如,Windows系统中的Python3.6搜索路径为: ``` C:\Python36\Lib\site-packages ``` 将pycocotools文件夹复制到该文件夹下,就完成了安装。 通过以上步骤,成功安装pycocotools,可以在Python代码中使用该模块进行目标检测等操作。如果在安装过程中出现错误,可以查看相关日志,重新执行上述步骤或寻求相关技术支持。 ### 回答3: 在安装pycocotools之前,需要确保您的操作系统上已经安装默认的依赖工具,包括GCC、PythonPython头文件、setuptools。在Linux系统下,可以使用以下命令安装: ``` sudo apt-get install build-essential python3 python3-dev python3-setuptools ``` 接下来,您可以按照以下步骤安装pycocotools: 1. 首先,您需要从GitHub上下载源代码。可以使用以下命令将其下载到您的本地目录: ``` git clone https://github.com/cocodataset/cocoapi.git ``` 2. 接着,进入`PythonAPI/pycocotools/`目录并运行以下命令: ``` python setup.py build_ext --inplace python setup.py install ``` 3. 到这里,您已经成功安装pycocotools。可以在Python中导入该使用,例如: ```python from pycocotools.coco import COCO ``` 以上就是安装pycocotools详细步骤,希望对您有帮助。如果您在安装过程中遇到了问题,可以参考相关文档或社区资源进行解决。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值