LLMs之GPT4ALL:GPT4ALL的简介、安装和使用方法、案例应用之详细攻略

LLMs之GPT4ALL:GPT4ALL的简介、安装和使用方法、案例应用之详细攻略

目录

GPT4ALL的简介

0、新功能

1、特点

2、功能

3、技术报告

GPT4ALL的安装和使用方法

1、安装

2、使用方法

GPT4ALL的案例应用

LLMs之LLaMA3:基于GPT4ALL框架对LLaMA-3实现模型部署并推理—通过加载训练后LLaMA-3的gguf模型文件然后在GUI界面中实现对话聊天


GPT4ALL的简介

GPT4ALL是一个运行强大自定义大语言模型的生态系统,能够在CPU和NVDIA以及AMD GPU上本地运行。它允许任何个人或企业轻松部署自己的边缘大规模语言模型

GPT4All是一款面向隐私的软件,用于与在您自己的计算机上运行的大型语言模型进行聊天。

GPT4All 模型是一个 3GB - 8GB 的文件,您可以下载并插入到 GPT4All 软件中。Nomic AI 支持并维护此软件生态系统,以确保质量和安全,并在努力允许任何个人或企业轻松部署自己的边缘大型语言模型的同时发挥领先作用。

官网地址GitHub - nomic-ai/gpt4all: gpt4all: run open-source LLMs anywhere

0、新功能

2023年10月19日:GGUF 支持发布,支持:
Mistral 7b 基础模型,在 gpt4all.io 上更新的模型库,包括 Rift Coder v1.5 在内的几个新的本地代码模型
Nomic Vulkan 支持 GGUF 中的 Q4_0 和 Q4_1 量化。
离线构建支持以运行旧版本的 GPT4All 本地 LLM 聊天客户端。

2023年9月18日:Nomic Vulkan 发布,支持在 NVIDIA 和 AMD GPU 上进行本地 LLM 推断。

2023年7月:稳定支持 LocalDocs,这是一个允许您私下和本地聊天与您的数据的功能。

2023年6月28日:基于 Docker 的 API 服务器推出,允许从与 OpenAI 兼容的 HTTP 端点进行本地 LLM

1、特点

>> 能够在支持AVX指令集的CPU上运行,不需要GPU也能运行

>> 提供3-8GB之间的多种预训练模型,用户可以下载后直接使用

>> 保障用户隐私,模型运行于本地不上传用户数据

>> 提供跨平台支持,可在Windows、MacOS、Linux三个平台上运行

2、功能

>> 聊天软件客户端,可以与预加载模型进行对话

>> 提供Python和TypeScript绑定,开发者可以基于此扩展功能

>> 支持LocalDocs功能,可以将文件索引并与模型对话

>> 提供Docker容器化部署,运行模型提供HTTP接口

>> 支持GPU加速,利用CUDA运行模型获得更好性能

3、技术报告

 Technical Report 3: GPT4All Snoozy and Groovy

📗 Technical Report 2: GPT4All-J

📗 Technical Report 1: GPT4All

GPT4ALL的安装和使用方法

1、安装

从GitHub下载安装程序包或源代码

Windows和MacOS直接运行安装程序完成功能

Linux用户需要编译安装依赖后运行安装脚本

2、使用方法

运行Chat客户端软件,选择加载的预训练模型

与模型使用文字进行对话交流

LocalDocs索引文件后可以针对文件内容提问

服务模式下提供HTTP API供其他应用调用

GPT4ALL的案例应用

个人对话助手,解答日常问题

团队内知识库,用于文档索引和搜索

网站客服智能对话,提供在线问题支持

教育培训辅助系统,学习问答辅助

LLMs之LLaMA3:基于GPT4ALL框架对LLaMA-3实现模型部署并推理—通过加载训练后LLaMA-3的gguf模型文件然后在GUI界面中实现对话聊天

https://yunyaniu.blog.csdn.net/article/details/138235793

### DeepSeek与GPT4All结合的技术指南 #### 一、概述 DeepSeek作为一个先进的大型语言模型,在中国乃至全球范围内引起了广泛关注。与此同时,GPT4All作为另一个开源项目也提供了丰富的功能支持。两者可以协同工作来创建更加强大灵活的应用程序[^1]。 为了更好地利用这两个工具集中的资源技术特性,下面将介绍一些基本概念以及具体的操作方法。 #### 二、环境搭建 要开始使用这些技术栈,首先需要安装必要的依赖项并配置开发环境: - 安装Python及其包管理器pip; - 下载并设置Elasticsearch集群用于数据索引服务部署; - 获取最新的`deepseek-v3`版本并通过Hugging Face平台加载预训练权重文件;对于GPT4All,则可以从官方GitHub页面找到对应的API接口说明文档其他辅助材料[^2]。 ```bash # 更新系统软件源列表 sudo apt-get update && sudo apt-get upgrade -y # 安装Python及相关组件 sudo apt install python3-pip git build-essential libssl-dev zlib1g-dev \ libncurses5-dev libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm \ libnuma1 lsb-release software-properties-common # 创建虚拟环境(推荐) python3 -m venv myenv source ./myenv/bin/activate # 安装Jinja2模板引擎以及其他可能需要用到的第三方库 pip install jinja2 elasticsearch requests transformers torch datasets accelerate bitsandbytes safetensors sentence-transformers faiss-cpu langchain gpt4all ``` #### 三、集成方案设计 当涉及到实际应用场景时,可以通过以下方式整合上述提到的各项服务: ##### 数据准备阶段 收集目标领域的语料资料,并将其转换成适合输入给LLM处理的形式——通常是JSON格式的小片段集合。接着把这些记录导入至ES实例当中形成可供检索的知识图谱结构。 ##### 查询解析环节 每当接收到新的查询请求之后,先经过初步清理去除无关字符标记化分词等预处理操作后再传递给搜索引擎做进一步匹配分析找出最贴近意图的结果条目链接起来构成完整的对话历史背景信息链路供后续推理判断之用。 ##### 动态调优过程 根据反馈情况适时调整参数设定优化性能表现比如增加BM25算法因子比重或是引入BERT句向量化机制增强相似度计算精度等等措施都有助于提升整体交互体验质量水平。 最后值得注意的是虽然这里主要讨论了有关于如何把两个独立存在的AI框架结合起来发挥更大价值但是实际上任何其他类型的NLP解决方案也同样适用只要遵循相同的设计思路即可达到预期效果[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值