LLMs之Agent:eko的简介、特点、安装和使用方法、案例应用之详细攻略

LLMs之Agent:eko的简介、特点、安装和使用方法、案例应用之详细攻略

目录

eko的简介

1、特点

2、框架对比

3、适应场景

eko的安装和使用方法:

1、安装

2、使用方法

eko的案例应用

1、股票数据分析与可视化

2、SEO 博客发布

3、清理大文件

4、自动化软件测试


eko的简介

2024年11月,Eko是一个用于构建生产就绪型代理工作流程的JavaScript框架,允许开发者使用自然语言创建可靠的代理程序,从简单的命令到复杂的工作流程。
Eko (发音类似于“echo”) 是一个生产就绪型的 JavaScript 框架,它使开发人员能够创建可靠的代理,从简单的命令到复杂的工作流程。它提供了一个统一的接口,用于在计算机和浏览器环境中运行代理
Eko是一个功能强大的、生产就绪型的开源 JavaScript 框架,它简化了使用自然语言构建复杂代理工作流程的过程。 其跨平台支持、多步工作流程处理能力、可干预性以及对私有 Web 资源的访问能力,使其在各种应用场景中都具有显著优势。

GitHub地址GitHub - FellouAI/eko: Eko (Eko Keeps Operating) - Build Production-ready Agentic Workflow with Natural Language - eko.fellou.ai

官网地址Eko - Production-ready Agent Framework for Developers

1、特点

与其他类似框架相比(Langchain, Dify.ai, Coze),Eko具有以下显著特点:

>> 跨平台支持:Eko支持所有平台,包括服务器端和浏览器端,而其他框架大多仅限于服务器端或特定 Web 环境。

>> 从单步到多步工作流程:Eko能够处理从简单的单步命令到复杂的多步工作流程,而某些框架仅支持简单的单步操作。

>> 可干预性 (Intervenability):Eko允许开发者在工作流程执行过程中进行干预和调整,提高了灵活性。

>> 高开发效率:Eko的设计目标是提高开发效率,简化代理程序的创建过程。

>> 访问私有 Web 资源:Eko能够访问私有 Web 资源,这对于需要处理敏感数据的应用至关重要。 其他框架通常缺乏此功能。

>> 开源:Eko是一个开源项目,方便社区贡献和改进。

2、框架对比

Eko在多个方面表现突出,相较于其他框架(如Langchain、Browseruse、Dify.ai、Coze和Midscene.js),它能够支持所有平台,简化工作流管理,提高开发效率,并且具备开源和访问私有Web资源的优势。相比之下,像Langchain或Browseruse等框架可能更适用于特定环境(如服务器端或浏览器端),但在跨平台支持和使用便捷性方面无法与Eko相比。
>> 支持的平台:Eko支持所有平台,这使得它具有广泛的适用性,而其他框架则有所限制,如Langchain仅支持服务器端,Browseruse仅支持浏览器端,Dify.ai、Coze和Midscene.js则只支持Web平台。
>> 一句话多步骤工作流:Eko可以通过一句话定义多步骤的工作流,这使得它在工作流配置上非常简便。与此不同,其他框架要么不支持这种工作流,要么需要更复杂的配置。
>> 可干预性:Eko支持可干预性,意味着在工作流中可以灵活地进行修改或干预。而Langchain和Browseruse等框架在这一方面的支持较为有限或没有。
>> 开发效率:Eko在开发效率上得分较高,意味着它优化了快速高效的开发流程。其他框架如Langchain和Browseruse的开发效率评分为中等,Dify.ai和Coze则为较低。
>> 开源:Eko是开源的,这增强了协作性和透明度,而Langchain、Browseruse和Coze等框架并非完全开源,尽管它们提供了一部分开源组件。
>> 访问私有Web资源:Eko可以访问私有Web资源,这对于一些应用场景非常重要。相比之下,表格中的其他大多数框架并不具备这一功能。

3、适应场景

Eko 可用于各种场景:浏览器自动化和网页抓取、系统文件和进程管理、工作流程自动化、数据处理和组织、GUI 自动化、多步骤任务编排。

eko的安装和使用方法:

1、安装

使用 npm 安装

npm install @eko-ai/eko

2、使用方法

项目README中提供了简化的代码示例,但强调这些代码无法直接运行,需要参考Eko快速入门指南。 以下为示例代码片段:


import { Eko } from '@eko-ai/eko';
const eko = new Eko({
  apiKey:'your_anthropic_api_key',
});


// 浏览器自动化示例
const extWorkflow = await eko.generate("Search for 'Eko framework' on Google and save the first result");
await eko.execute(extWorkflow);



// 系统操作示例
const sysWorkflow = await eko.generate("Create a new folder named 'reports' and move all PDF files there");
await eko.execute(sysWorkflow);

eko的案例应用

项目展示了多个Eko的应用案例,通过视频演示说明了其功能:

1、股票数据分析与可视化

收集雅虎财经的最新纳斯达克数据,进行分析并生成可视化报告。

Prompt: Collect the latest NASDAQ data on Yahoo Finance, including price changes, market capitalization, trading volume of major stocks, analyze the data and generate visualization reports.

2、SEO 博客发布

基于 Eko 项目的 GitHub README,搜索竞争对手,突出 Eko 的关键贡献,撰写广告博客文章并在 Write.as 上发布。

Prompt: Based on the README of FellouAI/eko on github, search for competitors, highlight the key contributions of Eko, write a blog post advertising Eko, and post it on Write.as.

3、清理大文件

清理当前目录中大于 1MB 的所有文件。

Prompt: Clean up all files in the current directory larger than 1MB

4、自动化软件测试

对登录页面进行自动化测试,包括空用户名、空密码、用户名错误、密码错误等场景,并生成测试报告。

Prompt: Automatic software testing

Current login page automation test:
1.  Correct account and password are: admin / 666666
2.  Please randomly combine usernames and passwords for testing to verify if login validation works properly, such as: username cannot be empty, password cannot be empty, incorrect username, incorrect password
3.  Finally, try to login with the correct account and password to verify if login is successful
4.  Generate test report and export

### minimind LLMs 源码解读分析 #### full_sft.py 文件解析 `full_sft.py` 是一个用于实现基于 PyTorch 的分布式混合精度语言模型全参数训练框架的脚本[^1]。该文件主要关注于如何高效地利用硬件资源,在大规模数据集上进行高效的训练。 为了支持分布式训练,此模块引入了 `torch.distributed.launch` 工具来启动多进程环境,并通过配置 GPU 设备来进行并行计算。对于优化器的选择,默认采用 AdamW 来更新权重参数;同时为了加速收敛过程以及提高数值稳定性,还应用了梯度裁剪技术防止梯度过大造成不稳定现象发生。 此外,考虑到现代深度学习任务中常见的内存瓶颈问题,这里实现了自动混合精度机制 (Automatic Mixed Precision, AMP),它允许网络中的某些部分以较低位宽的数据类型运行从而节省显存空间而不影响最终性能表现。 ```python from torch.cuda.amp import GradScaler, autocast scaler = GradScaler() with autocast(): outputs = model(inputs) loss.backward() scaler.step(optimizer) scaler.update() ``` #### eval.py 文件解析 另一方面,《eval.py》则专注于构建一个可以与用户实时互动交流的人工智能系统[^2]。具体来说就是创建了一个命令行界面(Command Line Interface, CLI), 让使用者能够输入自然语言查询语句得到相应的回复结果。 在这个过程中涉及到的关键组件包括但不限于: - **Tokenizer**: 负责将原始文本转换成 token 序列以便送入 Transformer 编解码架构处理; - **Model Inference Pipeline**: 定义好推理流程之后就可以调用预训练好的 checkpoint 进行预测操作了; - **Response Generation Logic**: 根据上下文信息动态调整生成策略确保对话连贯性逻辑一致性. ```python tokenizer = AutoTokenizer.from_pretrained('pretrained_model_path') model = AutoModelForCausalLM.from_pretrained('pretrained_model_path') input_text = "你好" inputs = tokenizer(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_length=50) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值