【YOLOv11改进- 注意力机制】YOLOv11+CBAM: 基于YOLOv11的空间以及通道双重卷积注意力机制,老牌注意力机制,效果稳定可靠;

### YOLOv11CBAM集成的实现细节 #### 背景介绍 YOLO (You Only Look Once) 是一种流行的实时目标检测算法,而 CBAM (Convolutional Block Attention Module) 则是一种有效的注意力机制模块。通过引入CBAMYOLO架构中可以显著提升模型对于不同区域特征的关注度,从而提高检测精度。 #### 集成方法概述 为了将CBAM融入YOLOv11框架内,在网络结构设计阶段需考虑如何合理放置该模块以达到最佳效果。通常情况下,可以在骨干网(Backbone Network)之后以及颈部(Neck Layer)之前加入CBAM层来增强空间通道维度上的表征能力[^2]。 具体来说: - **位置选择**:在YOLOv11中的FPN(Feature Pyramid Networks)部分前插入CBAM- **参数调整**:由于增加了额外的计算量,可能需要适当减少其他地方的复杂度或者增加硬件资源支持; - **训练策略**:采用更先进的损失函数如CIoU Loss有助于加快收敛速度并提高边界框回归准确性[^1]。 ```python import torch.nn as nn class YOLOv11WithCBAM(nn.Module): def __init__(self, num_classes=80): super(YOLOv11WithCBAM, self).__init__() # Backbone network definition here... self.backbone = ... # Inserting CBAM after backbone but before FPN/neck layers self.cbam = CBAM() # Neck layer definitions such as PANet etc. self.neck = ... def forward(self, x): out = self.backbone(x) out = self.cbam(out) # Apply attention mechanism via CBAM out = self.neck(out) return out ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值