视觉SLAM新手学习(第一部分理论部分)


前言

本人刚接触SLAM大概两个星期,下面是本人的一些理解。仅供参考,若有错误,欢迎来扰!!!是关于十四讲的学习!!!
SLAM:Simultaneous Localization and Mapping 同时定位与地图构建

一、第一讲(准备)

数学:高等数学、线性代数(矩阵论)、概率论
编程:C++、Linux,了解语法和基本命令即可
英语:文献、文档阅读能力
环境:Ubuntu 16.04
不提供windows环境下的方案!

一、第二讲(综述)

在这里插入图片描述

名称含义
视觉里程计估计邻近时刻的相机运动 (最简化:两个图像的相对运动)
后端从带有噪声的数据中估计最优轨迹与地图、最大后验概率估计、滤波器、图优化
回环检测检测相机是否到达过之前位置、判断与之前位置的差异、计算图像间相似性、词袋模型
建图导航、规划、通讯、交互、可视化、度量地图、拓扑地图、稀疏地图、稠密地图

在这里插入图片描述
位置是三维的,如何表述?——第三、四讲
观测模型如何表述?——第五讲
已知u,z时,如何推断x,y?——第六讲

二、第三讲(刚体运动)和第四讲(李群和李代数)

1.感性认识

在这里插入图片描述

2.相关公式

见《视觉SLAM十四讲》

三、第五讲(相机模型)

1.针孔相机模型

下图:针孔相机的原理图
在这里插入图片描述
从一个点的世界坐标到,相机的内部的像素坐标的转化如下:
在这里插入图片描述
成像平面到像素平面:就会原点的平移加缩放。
其中涉及到了一个归一化平面的知识如下:
在这里插入图片描述

2.畸变类型

畸变可以用归一化坐标的变换来描述!!!
径向畸变:
在这里插入图片描述
径向畸变的多项式描述:
在这里插入图片描述

切向畸变:
相机在组装的过程中由于 透镜和成像平面不是严格平行导致的。
在这里插入图片描述
切向畸变的多项式描述:
在这里插入图片描述
将他们放在一起保留各项系数(在实际更加实用):
在这里插入图片描述

3.双目相机模型

下图:双目相机模型相机的原理图
在这里插入图片描述
d称为视差(disparity),描述同一个点在左右目上成像的距离。
d最小为1个像素,因此双目能测量的z有最大值:fb。
虽然距离公式简单,但d不容易计算。
左右相机中心距离称为基线,左右像素的几何关系:
在这里插入图片描述
整理得:
在这里插入图片描述

四、第六讲(非线性优化)

1.贝叶斯公式

概率密度函数:
在这里插入图片描述
这个称为全概率公理!!
概率密度函数在某区间的积分即为概率:
在这里插入图片描述
如果x表达某种状态,也称为x在该区间下的可能性/似然(likehood):
在这里插入图片描述
条件概率:
在这里插入图片描述
联合概率:
在这里插入图片描述
联合概率也满足全概率公理:
在这里插入图片描述
贝叶斯公式:联合=条件*边缘
在这里插入图片描述
另一形式:
在这里插入图片描述
赋予该式物理意义:x=状态,y=传感器读数,p(y|x)=传感器模型,p(x|y)=状态估计,就叫贝叶斯公式。

2.高斯分布

一维高斯分布
在这里插入图片描述
在这里插入图片描述
多维高斯分布
在这里插入图片描述
在这里插入图片描述
高斯概率密度函数
联合高斯分布:
在这里插入图片描述
在这里插入图片描述已知联合分布p(x,y)和p(y),求p(x|y)
这个过程中,均值作出了调整,方差变小了。

3.状态估计问题

可以由运动方程和观测方程组成。
在这里插入图片描述
最大后然估计MAP:
在这里插入图片描述
最大似然估计MLE:
在这里插入图片描述

1.最小二乘法的引出

根据观测方程可以推出:
在这里插入图片描述
列出其高斯分布的表达式,并且求对数就可以由最大问题转化为求最小的问题:
在这里插入图片描述

2.批量估计问题

定义误差:
在这里插入图片描述
进而引出最小二乘问题:
在这里插入图片描述

4.非线性最小二乘

当f(x)特别复杂的时候,我们应该怎么求 min(1/2)*||f(x)||^2的最小值,和最小值对应的x。可采用迭代的思想:
在这里插入图片描述
其中△xk是人为设置的,同时也要设定增量△xk的步长!!那么这个△xk取什么才算合适呢???!!!

可以有以下方式:
在这里插入图片描述
将分别介绍这几类方法

1.一阶和二阶梯度法

在这里插入图片描述

在x处泰勒展开:
在这里插入图片描述

J为雅克比矩阵,H为海塞矩阵。

1.一阶法(最速下降法)

只保留一阶项:
在这里插入图片描述
梯度的方向为函数增长的方向。取增量的反方向,就可以保证函数一直处于下降的情况即:
在这里插入图片描述
通常还需要计算步长!!!

2.二阶法(牛顿法)

保留二阶梯度:
在这里插入图片描述

对△x求导:
在这里插入图片描述
但是求H的过程过于复杂!!

2.高斯牛顿法(Gauss-Newton)

将目标函数降级为f(x)而不是F(x),对f(x)进行展开:
在这里插入图片描述
使||f(x+△x)||^2最小:
在这里插入图片描述
在这里插入图片描述
但是无法保证H可逆!!!

3.列文伯格-马夸尔特法(Levenberg-Marquadt)

L-M属于信赖区域方法(Trust Region),认为近似只在区域内可靠
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
1.LM相比于GN,能够保证增量方程的正定性
即,认为近似只在一定范围内成立,如果近似不好则缩小范围
2.从增量方程上来看,可以看成一阶和二阶的混合
参数λ控制着两边的权重

总结

以上是本人对高翔博士的《SLAM十四讲》第一部分数学基础部分的理解。如有错误,多多指出!!!
VISIO资源下载:
https://download.csdn.net/download/qq_42027654/19854975

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小菜鸡?_?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值