YOLOv10改进策略【卷积层】| ECCV-2024 小波卷积WTConv 增大感受野,降低参数量计算量,独家创新助力涨点

一、本文介绍

本文记录的是利用小波卷积WTConv模块优化YOLOv10的目标检测网络模型WTConv的目的是在不出现过参数化的情况下有效地增加卷积的感受野,从而解决了CNN在感受野扩展中的参数膨胀问题。本文将其加入到深度可分离卷积中,有效降低模型参数量和计算量,并二次创新C2fCIB使模块更好地捕捉低频特征,增强网络性能。


专栏目录:YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv10改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

<think>好的,用户需要寻找关于改进小波变换与卷积神经网络(WT-CNN)融合框架的相关图片,特别是架构图。我需要先理解用户的具体需求,然后提供有用的信息。 首先,用户提到的WTConv是基于小波变换的新型卷积层,用于扩展CNN的感受野,同时减少参数和计算量。这可能涉及将小波变换集成到CNN的某个部分,比如在卷积层之前进行小波分解,或者用WTConv替换传统卷积层。架构图可能需要展示这些模块的连接方式和数据流向。 接下来,用户可能需要架构图来直观理解WT-CNN的结构,可能是为了学术研究或实际应用中的模型改进。考虑到用户引用了ECCV 2024WTConv论文,我应该建议他们查阅该论文中的图表,因为论文通常会包含详细的架构图。此外,YOLO11改进中的C3k2融合WTConv部分也可能有相关的图示,可以推荐用户查看相关论文或开源代码库中的文档。 另外,用户可能需要自己绘制架构图的指导。我需要提供一些建议,比如使用工具(Visio、PPT、Draw.io)和需要突出的关键部分,例如小波分解层、多尺度特征融合、WTConv模块的位置等。同时,引用中的信息可以帮助用户理解设计重,比如如何扩展感受野,保持参数效率,以及提升鲁棒性。 可能用户无法直接访问论文中的图片,这时候可以建议他们去论文的官方页面、arXiv版本或联系作者获取。另外,开源实现如GitHub仓库可能也包含架构图,用户可以在代码库的README或文档部分查找。 最后,确保回答结构清晰,分说明可能的获取途径和绘制建议,并附上相关引用,帮助用户进一步探索。</think>根据您的要求,以下提供改进小波变换与CNN融合框架的架构设计思路和可视化建议,并附相关资源指引: ### WT-CNN融合框架设计要 1. **小波分解前置层** - 输入图像先通过二维离散小波变换(DWT)分解为低频分量$LL$和高频分量$LH,HL,HH$,形成多尺度特征图 - 数学表达:$$ \text{DWT}(I) = [LL, LH, HL, HH] $$ - 优势:保留空间信息同时分离频域特征[^2] 2. **WTConv模块结构** - 采用小波基函数代替传统卷积- 通过下采样实现感受野指数级扩展 - 参数数量对比:传统$k×k$卷积参数为$k^2$,WTConv仅需$4log_2k$参数[^3] 3. **多分支特征融合** ```mermaid graph TD 输入图像-->小波分解 小波分解-->|LL分量|WTConv_低频 小波分解-->|高频分量|常规卷积 WTConv_低频-->特征拼接 常规卷积-->特征拼接 特征拼接-->下游网络 ``` ### 可视化资源获取建议 1. **论文原文图示** - 推荐查阅原始论文《Wavelet Convolutions for Large Receptive Fields》Fig.2架构图 - ECCV会议论文集通常包含彩色高清图示[^1] - arXiv预印版论文地址:https://arxiv.org/abs/xxxx.xxxxx 2. **开源代码可视化** - 官方GitHub仓库常包含模型结构图(如YOLO-WT实现库) - 推荐搜索关键词:"WTConv implementation"、"Wavelet-CNN pytorch" 3. **自行绘制要** - 突出显示小波变换层与常规卷积层的连接方式 - 标注多尺度特征融合路径 - 使用不同颜色区分低频/高频处理分支 - 建议工具:Draw.io、PowerPoint、Latex TikZ ### 典型改进架构特征 1. **双路径信息处理** - 低频路径:WTConv层处理全局信息 - 高频路径:常规卷积捕捉细节特征 - 最终通过concatenation或add操作融合 2. **参数效率对比** | 方法         | 感受野   | 参数量   | FLOPs   | |-------------|---------|---------|---------| | 常规7x7卷积 | 7x7     | 49     | 49HWC   | | WTConv     | 56x56   | 12     | 16HWC   | 3. **鲁棒性增强机制** - 小波变换的时频局部化特性提升抗噪能力 - 多尺度分析增强对输入变化的适应性 - 在Gaussian噪声测试中,WTConv比常规卷积精度高8.7%[^1] 建议结合具体任务需求调整融合策略,图像分类任务可侧重低频信息处理,目标检测则需要平衡高低频特征。最新进展显示,动态小波基选择机制可进一步提升性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值