Paper——Diffusion Model前向过程和反向过程详解

文章详细介绍了Diffusion过程,包括前向过程如何逐步添加高斯噪声到原始图像,形成纯噪声图像,以及反向过程如何利用神经网络进行去噪,恢复原始图像。损失函数用于优化这一过程。此外,提到了U-Net和Attention机制在反向过程中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Diffusion过程解析

前向和后向相互独立,前向过程使用马尔科夫链实现,反向过程采用神经网络进行预测。

前向过程

在这里插入图片描述

  • 输入一个原始图片
  • 每一步添加噪声,噪声服从高斯分布(均值为0,方差为1,记作 N ( 0 , 1 ) N(0,1) N(0,1),服从正态分布);
  • 最终得到一个只含有噪声的图像;
公式详解
每一步增加噪声的求解

X t = a t X t − 1 + 1 − a t ε t X_t = \sqrt{a_t} X_{t-1} + \sqrt{1-a_t} \varepsilon_t Xt=at Xt1+1at εt

  • X t X_t Xt当前时刻的图像; X t − 1 X_{t-1} Xt1前一时刻的图像;
  • a t a_t at噪声权重,随着 t t t 的增加不断变化(论文中是从0.0001到0.02);
  • ε t \varepsilon_t εt是指每个时刻添加的独立的高斯噪声
从起始状态到最终状态的公式

在这里插入图片描述

反向过程

反向过程是通过参数化的U-Net+Attention神经网络实现从噪声图像到原始图像的denoise。

在这里插入图片描述

损失函数

最小化该公式:

∥ z ˉ t − z θ ( α ˉ t x 0 + 1 − α ˉ t z ˉ t , t ) ∥ \left\|\bar{z}_t-z_\theta\left(\sqrt{\bar{\alpha}_t} x_0+\sqrt{1-\bar{\alpha}_t} \bar{z}_t, t\right)\right\| zˉtzθ(αˉt x0+1αˉt zˉt,t)

  • z ˉ t \bar{z}_t zˉt t t t 时刻的噪声真值
  • z θ z_\theta zθ噪声预测值
  • α ˉ t \bar{\alpha}_t αˉt噪声参数,和 t t t 有关;

总结公式

在这里插入图片描述

参考资料:

代码资料

链接:https://pan.baidu.com/s/1P1WTZtr5UBLu9FVDXCk3nA?pwd=tuh4
提取码:tuh4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值