金融计量模型(十一):对波动率和相关性建模

对波动率和相关性建模

引入波动率:

无波动率时:
r t = ϕ 0 + ϕ 1 r t − 1 + a t r_t=\phi_0+\phi_1r_{t-1}+a_t rt=ϕ0+ϕ1rt1+at
a t a_t at 是白噪声, V a r ( a t ) = σ a 2 Var(a_t)=\sigma_a^2 Var(at)=σa2
E ( r t + 1 ∣ F t ) = ϕ 0 + ϕ 1 r t e r r o r = a t + 1 , V a r ( e r r o r ) = σ a 2 95 %   C I : [ ϕ 0 + ϕ 1 r t − 1.96 σ a , ϕ 0 + ϕ 1 r t + 1.96 σ a ] E(r_{t+1}|F_t)=\phi_0+\phi_1r_t\\error=a_{t+1},Var(error)=\sigma_a^2\\95\%\ CI:[\phi_0+\phi_1r_t-1.96\sigma_a,\phi_0+\phi_1r_t+1.96\sigma_a] E(rt+1Ft)=ϕ0+ϕ1rterror=at+1,Var(error)=σa295% CI:[ϕ0+ϕ1rt1.96σa,ϕ0+ϕ1rt+1.96σa]
有波动率时: V a r ( a t + 1 ∣ F t ) Var(a_{t+1}|F_t) Var(at+1Ft) 是时变的。
V a r ( a t + 1 ∣ F t ) = E ( a t + 1 2 ∣ F t ) a t + 1 2 = α 0 + α 1 a t 2 + η t E ( a t + 1 2 ∣ F t ) = α 0 + α 1 a t 2 a t + 1 2 = E ( a t + 1 2 ∣ F t ) × ε t 2 a t + 1 = E ( a t + 1 2 ∣ F t ) × ε t , E ( ε t 2 ) = 1 Var(a_{t+1}|F_t)=E(a_{t+1}^2|F_t)\\a_{t+1}^2=\alpha_0+\alpha_1a_t^2+\eta_t\\E(a_{t+1}^2|F_t)=\alpha_0+\alpha_1a_t^2\\a_{t+1}^2=E(a_{t+1}^2|F_t)\times\varepsilon_t^2\\a_{t+1}=\sqrt{E(a_{t+1}^2|F_t)}\times\varepsilon_t,E(\varepsilon_t^2)=1 Var(at+1Ft)=E(at+12Ft)at+12=α0+α1at2+ηtE(at+12Ft)=α0+α1at2at+12=E(at+12Ft)×εt2at+1=E(at+12Ft) ×εt,E(εt2)=1

波动率

基本结构

r t = μ t + a t , μ t = ϕ 0 + ∑ i = 1 p ϕ i r t − i − ∑ i = 1 q θ i a t − i r_t=\mu_t+a_t,\mu_t=\phi_0+\sum_{i=1}^p\phi_ir_{t-i}-\sum_{i=1}^q\theta_ia_{t-i} rt=μt+at,μt=ϕ0+i=1pϕirtii=1qθiati

波动率模型与时间演化有关:
σ t 2 = V a r ( r t ∣ F t − 1 ) = V a r ( a t ∣ F t − 1 ) \sigma_t^2=Var(r_t|F_{t-1})=Var(a_t|F_{t-1}) σt2=Var(rtFt1)=Var(atFt1)
上述为波动率方程。return的条件方差以过去的信息为基础。

相关的过去信息:

  1. 历史时期的波动率信息: { a t − 1 2 , a t − 2 2 , ⋯   } \{a_{t-1}^2,a_{t-2}^2,\cdots\} { at12,at22,}
  2. 历史时期的模型拟合方差: { σ t − 1 2 , σ t − 2 2 , ⋯   } \{\sigma_{t-1}^2,\sigma_{t-2}^2,\cdots\} { σt12,σt22,}
  3. 其他过去信息

ARCH模型包含了第一项,GARCH模型同时包含了第一项和第二项。

单变量波动率模型

ARCH模型

ARCH(1)模型:
σ t 2 = α 0 + α 1 a t − 1 2 \sigma_{t}^2=\alpha_0+\alpha_1a_{t-1}^2 σt2=α0+α1at12
其中 α 1 ≥ 0 \alpha_1\geq0 α10

ARCH(m)模型:
r t = E ( r t ∣ F t − 1 ) + a t , a t = σ t ε t σ t 2 = α 0 + α 1 a t − 1 2 + ⋯ + α m a t − m 2 r_t=E(r_t|F_{t-1})+a_t,a_t=\sigma_t\varepsilon_t\\\sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2+\cdots+\alpha_ma_{t-m}^2 rt=E(rtFt1)+at,at=σtεtσt2=α0+α1at12++αmatm2
其中 { ε t } \{\varepsilon_t\} { εt} 独立同分布,均值为0,方差为1。 α 0 > 0 , α i ≥ 0 , i > 0 \alpha_0>0,\alpha_i\geq0,i>0 α0>0,αi0,i>0

{ a t } \{a_t\} { at} 的性质

E ( a t ∣ F t − 1 ) = E ( σ t ε t ∣ F t − 1 ) = σ t E ( ε t ∣ F t − 1 ) = 0 E ( a t ) = E [ E ( a t ∣ F t − 1 ) ] = 0 E ( a t a t − j ) = E [ E ( a t a t − j ∣ F t − 1 ) ] = E [ a t − j E ( a t ∣ F t − 1 ) ] = 0 , j ≥ 1 V a r ( a t ) = E ( a t 2 ) = E [ E ( a t 2 ∣ F t − 1 ) ] = E ( σ t 2 ) E(a_t|F_{t-1})=E(\sigma_t\varepsilon_t|F_{t-1})=\sigma_tE(\varepsilon_t|F_{t-1})=0\\E(a_t)=E[E(a_t|F_{t-1})]=0\\E(a_ta_{t-j})=E[E(a_ta_{t-j}|F_{t-1})]=E[a_{t-j}E(a_t|F_{t-1})]=0,j\geq1\\Var(a_t)=E(a_t^2)=E[E(a_t^2|F_{t-1})]=E(\sigma_t^2) E(atFt1)=E(σtεtFt1)=σtE(εtFt1)=0E(at)=E[E(atFt1)]=0E(atatj)=E[E(atatjFt1)]=E[atjE(atFt1)]=0,j1Var(at)=E(at2)=E[E(at2Ft1)]=E(σt2)

条件异方差误差:
V a r ( a t ∣ F t − 1 ) = E ( a t 2 ∣ F t − 1 ) = σ t 2 E ( ε t 2 ∣ F t − 1 ) = σ t 2 Var(a_t|F_{t-1})=E(a_t^2|F_{t-1})=\sigma_t^2E(\varepsilon_t^2|F_{t-1})=\sigma_t^2 Var(atFt1)=E(at2Ft1)=σt2E(εt2Ft1)=σt2
重新参数化:令 η t = a t 2 − σ t 2 \eta_t=a_t^2-\sigma_t^2 ηt=at2σt2 { η t } \{\eta_t\} { ηt} 是不相关的序列,均值为0,ARCH模型变成:
a t 2 = α 0 + α 1 a t − 1 2 + ⋯ + α m a t − m 2 + η t a_t^2=\alpha_0+\alpha_1a_{t-1}^2+\cdots+\alpha_ma_{t-m}^2+\eta_t at2=α0+α1at12++αmatm2+ηt
上式是 { a t 2 } \{a_t^2\} { at2} 序列的AR(m)模型,可用PACF判断ARCH的阶数m。

假设平稳( α 1 + ⋯ + α m < 1 \alpha_1+\cdots+\alpha_m<1 α1++αm<1):
E ( σ t 2 ) = α 0 + α 1 E ( a t − 1 2 ) + ⋯ + α m E ( a t − m 2 ) = α 0 + α 1 E ( σ t 2 ) + ⋯ + α m E ( σ t 2 ) E ( σ t 2 ) = σ ˉ 2 = α 0 1 − α 1 − ⋯ − α m E(\sigma_t^2)=\alpha_0+\alpha_1E(a_{t-1}^2)+\cdots+\alpha_mE(a_{t-m}^2)=\alpha_0+\alpha_1E(\sigma_t^2)+\cdots+\alpha_mE(\sigma_t^2)\\E(\sigma_t^2)=\bar\sigma^2=\frac{\alpha_0}{1-\alpha_1-\cdots-\alpha_m} E(σt2)=α0+α1E(at12)++αmE(atm2)=α0+α1E(σt2)++αmE(σt2)E(σt2)=σˉ2=1α1αmα0

ARCH(1)的性质

考虑一个ARCH(1)模型:
a t = σ t ε t , σ t 2 = α 0 + α 1 a t − 1 2 a_t=\sigma_t\varepsilon_t,\sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2 at=σtεt,σt2=α0+α1at12
其中 α 0 > 0 , α 1 ≥ 0 \alpha_0>0,\alpha_1\geq0 α0>0,α10
E ( a t ) = 0 V a r ( a t ) = α 0 1 − α 1   i f   0 ≤ α 1 < 1 E(a_t)=0\\Var(a_t)=\frac{\alpha_0}{1-\alpha_1}\ if\ 0\leq\alpha_1<1\\ E(at)=0Var(at)=1α1α0 if 0α1<1
假设 ε t \varepsilon_t εt 服从正态分布,则有
E ( a t 4 ∣ F t − 1 ) = 3 [ E ( a t 2 ∣ F t − 1 ) ] 2 = 3 ( α 0 + α 1 a t − 1 2 ) 2 E ( a t 4 ) = E [ E ( a t 4 ∣ F t − 1 ) ] = 3 E [ ( α 0 + α 1 a t − 1 2 ) 2 ] = 3 E [ α 0 2 + 2 α 0 α 1 a t − 1 2 + α 1 2 a t − 1 4 ] = m 4 m 4 = 3 [ α 0 2 + 2 α 0 α 1 V a r ( a t ) + α 1 2 m 4 ] = 3

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值