文章目录
对波动率和相关性建模
引入波动率:
无波动率时:
r t = ϕ 0 + ϕ 1 r t − 1 + a t r_t=\phi_0+\phi_1r_{t-1}+a_t rt=ϕ0+ϕ1rt−1+at
a t a_t at 是白噪声, V a r ( a t ) = σ a 2 Var(a_t)=\sigma_a^2 Var(at)=σa2。
E ( r t + 1 ∣ F t ) = ϕ 0 + ϕ 1 r t e r r o r = a t + 1 , V a r ( e r r o r ) = σ a 2 95 % C I : [ ϕ 0 + ϕ 1 r t − 1.96 σ a , ϕ 0 + ϕ 1 r t + 1.96 σ a ] E(r_{t+1}|F_t)=\phi_0+\phi_1r_t\\error=a_{t+1},Var(error)=\sigma_a^2\\95\%\ CI:[\phi_0+\phi_1r_t-1.96\sigma_a,\phi_0+\phi_1r_t+1.96\sigma_a] E(rt+1∣Ft)=ϕ0+ϕ1rterror=at+1,Var(error)=σa295% CI:[ϕ0+ϕ1rt−1.96σa,ϕ0+ϕ1rt+1.96σa]
有波动率时: V a r ( a t + 1 ∣ F t ) Var(a_{t+1}|F_t) Var(at+1∣Ft) 是时变的。
V a r ( a t + 1 ∣ F t ) = E ( a t + 1 2 ∣ F t ) a t + 1 2 = α 0 + α 1 a t 2 + η t E ( a t + 1 2 ∣ F t ) = α 0 + α 1 a t 2 a t + 1 2 = E ( a t + 1 2 ∣ F t ) × ε t 2 a t + 1 = E ( a t + 1 2 ∣ F t ) × ε t , E ( ε t 2 ) = 1 Var(a_{t+1}|F_t)=E(a_{t+1}^2|F_t)\\a_{t+1}^2=\alpha_0+\alpha_1a_t^2+\eta_t\\E(a_{t+1}^2|F_t)=\alpha_0+\alpha_1a_t^2\\a_{t+1}^2=E(a_{t+1}^2|F_t)\times\varepsilon_t^2\\a_{t+1}=\sqrt{E(a_{t+1}^2|F_t)}\times\varepsilon_t,E(\varepsilon_t^2)=1 Var(at+1∣Ft)=E(at+12∣Ft)at+12=α0+α1at2+ηtE(at+12∣Ft)=α0+α1at2at+12=E(at+12∣Ft)×εt2at+1=E(at+12∣Ft)×εt,E(εt2)=1
波动率
基本结构
r t = μ t + a t , μ t = ϕ 0 + ∑ i = 1 p ϕ i r t − i − ∑ i = 1 q θ i a t − i r_t=\mu_t+a_t,\mu_t=\phi_0+\sum_{i=1}^p\phi_ir_{t-i}-\sum_{i=1}^q\theta_ia_{t-i} rt=μt+at,μt=ϕ0+i=1∑pϕirt−i−i=1∑qθiat−i
波动率模型与时间演化有关:
σ
t
2
=
V
a
r
(
r
t
∣
F
t
−
1
)
=
V
a
r
(
a
t
∣
F
t
−
1
)
\sigma_t^2=Var(r_t|F_{t-1})=Var(a_t|F_{t-1})
σt2=Var(rt∣Ft−1)=Var(at∣Ft−1)
上述为波动率方程。return的条件方差以过去的信息为基础。
相关的过去信息:
- 历史时期的波动率信息: { a t − 1 2 , a t − 2 2 , ⋯ } \{a_{t-1}^2,a_{t-2}^2,\cdots\} {at−12,at−22,⋯}
- 历史时期的模型拟合方差: { σ t − 1 2 , σ t − 2 2 , ⋯ } \{\sigma_{t-1}^2,\sigma_{t-2}^2,\cdots\} {σt−12,σt−22,⋯}
- 其他过去信息
ARCH模型包含了第一项,GARCH模型同时包含了第一项和第二项。
单变量波动率模型
ARCH模型
ARCH(1)模型:
σ
t
2
=
α
0
+
α
1
a
t
−
1
2
\sigma_{t}^2=\alpha_0+\alpha_1a_{t-1}^2
σt2=α0+α1at−12
其中
α
1
≥
0
\alpha_1\geq0
α1≥0。
ARCH(m)模型:
r
t
=
E
(
r
t
∣
F
t
−
1
)
+
a
t
,
a
t
=
σ
t
ε
t
σ
t
2
=
α
0
+
α
1
a
t
−
1
2
+
⋯
+
α
m
a
t
−
m
2
r_t=E(r_t|F_{t-1})+a_t,a_t=\sigma_t\varepsilon_t\\\sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2+\cdots+\alpha_ma_{t-m}^2
rt=E(rt∣Ft−1)+at,at=σtεtσt2=α0+α1at−12+⋯+αmat−m2
其中
{
ε
t
}
\{\varepsilon_t\}
{εt} 独立同分布,均值为0,方差为1。
α
0
>
0
,
α
i
≥
0
,
i
>
0
\alpha_0>0,\alpha_i\geq0,i>0
α0>0,αi≥0,i>0。
{ a t } \{a_t\} {at} 的性质
E ( a t ∣ F t − 1 ) = E ( σ t ε t ∣ F t − 1 ) = σ t E ( ε t ∣ F t − 1 ) = 0 E ( a t ) = E [ E ( a t ∣ F t − 1 ) ] = 0 E ( a t a t − j ) = E [ E ( a t a t − j ∣ F t − 1 ) ] = E [ a t − j E ( a t ∣ F t − 1 ) ] = 0 , j ≥ 1 V a r ( a t ) = E ( a t 2 ) = E [ E ( a t 2 ∣ F t − 1 ) ] = E ( σ t 2 ) E(a_t|F_{t-1})=E(\sigma_t\varepsilon_t|F_{t-1})=\sigma_tE(\varepsilon_t|F_{t-1})=0\\E(a_t)=E[E(a_t|F_{t-1})]=0\\E(a_ta_{t-j})=E[E(a_ta_{t-j}|F_{t-1})]=E[a_{t-j}E(a_t|F_{t-1})]=0,j\geq1\\Var(a_t)=E(a_t^2)=E[E(a_t^2|F_{t-1})]=E(\sigma_t^2) E(at∣Ft−1)=E(σtεt∣Ft−1)=σtE(εt∣Ft−1)=0E(at)=E[E(at∣Ft−1)]=0E(atat−j)=E[E(atat−j∣Ft−1)]=E[at−jE(at∣Ft−1)]=0,j≥1Var(at)=E(at2)=E[E(at2∣Ft−1)]=E(σt2)
条件异方差误差:
V
a
r
(
a
t
∣
F
t
−
1
)
=
E
(
a
t
2
∣
F
t
−
1
)
=
σ
t
2
E
(
ε
t
2
∣
F
t
−
1
)
=
σ
t
2
Var(a_t|F_{t-1})=E(a_t^2|F_{t-1})=\sigma_t^2E(\varepsilon_t^2|F_{t-1})=\sigma_t^2
Var(at∣Ft−1)=E(at2∣Ft−1)=σt2E(εt2∣Ft−1)=σt2
重新参数化:令
η
t
=
a
t
2
−
σ
t
2
\eta_t=a_t^2-\sigma_t^2
ηt=at2−σt2,
{
η
t
}
\{\eta_t\}
{ηt} 是不相关的序列,均值为0,ARCH模型变成:
a
t
2
=
α
0
+
α
1
a
t
−
1
2
+
⋯
+
α
m
a
t
−
m
2
+
η
t
a_t^2=\alpha_0+\alpha_1a_{t-1}^2+\cdots+\alpha_ma_{t-m}^2+\eta_t
at2=α0+α1at−12+⋯+αmat−m2+ηt
上式是
{
a
t
2
}
\{a_t^2\}
{at2} 序列的AR(m)模型,可用PACF判断ARCH的阶数m。
假设平稳(
α
1
+
⋯
+
α
m
<
1
\alpha_1+\cdots+\alpha_m<1
α1+⋯+αm<1):
E
(
σ
t
2
)
=
α
0
+
α
1
E
(
a
t
−
1
2
)
+
⋯
+
α
m
E
(
a
t
−
m
2
)
=
α
0
+
α
1
E
(
σ
t
2
)
+
⋯
+
α
m
E
(
σ
t
2
)
E
(
σ
t
2
)
=
σ
ˉ
2
=
α
0
1
−
α
1
−
⋯
−
α
m
E(\sigma_t^2)=\alpha_0+\alpha_1E(a_{t-1}^2)+\cdots+\alpha_mE(a_{t-m}^2)=\alpha_0+\alpha_1E(\sigma_t^2)+\cdots+\alpha_mE(\sigma_t^2)\\E(\sigma_t^2)=\bar\sigma^2=\frac{\alpha_0}{1-\alpha_1-\cdots-\alpha_m}
E(σt2)=α0+α1E(at−12)+⋯+αmE(at−m2)=α0+α1E(σt2)+⋯+αmE(σt2)E(σt2)=σˉ2=1−α1−⋯−αmα0
ARCH(1)的性质
考虑一个ARCH(1)模型:
a
t
=
σ
t
ε
t
,
σ
t
2
=
α
0
+
α
1
a
t
−
1
2
a_t=\sigma_t\varepsilon_t,\sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2
at=σtεt,σt2=α0+α1at−12
其中
α
0
>
0
,
α
1
≥
0
\alpha_0>0,\alpha_1\geq0
α0>0,α1≥0。
E
(
a
t
)
=
0
V
a
r
(
a
t
)
=
α
0
1
−
α
1
i
f
0
≤
α
1
<
1
E(a_t)=0\\Var(a_t)=\frac{\alpha_0}{1-\alpha_1}\ if\ 0\leq\alpha_1<1\\
E(at)=0Var(at)=1−α1α0 if 0≤α1<1
假设
ε
t
\varepsilon_t
εt 服从正态分布,则有
E
(
a
t
4
∣
F
t
−
1
)
=
3
[
E
(
a
t
2
∣
F
t
−
1
)
]
2
=
3
(
α
0
+
α
1
a
t
−
1
2
)
2
E
(
a
t
4
)
=
E
[
E
(
a
t
4
∣
F
t
−
1
)
]
=
3
E
[
(
α
0
+
α
1
a
t
−
1
2
)
2
]
=
3
E
[
α
0
2
+
2
α
0
α
1
a
t
−
1
2
+
α
1
2
a
t
−
1
4
]
=
m
4
m
4
=
3
[
α
0
2
+
2
α
0
α
1
V
a
r
(
a
t
)
+
α
1
2
m
4
]
=
3
α
0
2
(
1
+
2
α
1
1
−
α
1
)
+
3
α
1
2
m
4
m
4
=
3
α
0
2
(
1
+
α
1
)
(
1
−
α
1
)
(
1
−
3
α
1
2
)
E(a_t^4|F_{t-1})=3[E(a_t^2|F_{t-1})]^2=3(\alpha_0+\alpha_1a_{t-1}^2)^2\\E(a_t^4)=E[E(a_t^4|F_{t-1})]=3E[(\alpha_0+\alpha_1a_{t-1}^2)^2]=3E[\alpha_0^2+2\alpha_0\alpha_1a_{t-1}^2+\alpha_1^2a_{t-1}^4]=m_4\\m_4=3[\alpha_0^2+2\alpha_0\alpha_1Var(a_t)+\alpha_1^2m_4]=3\alpha_0^2(1+2\frac{\alpha_1}{1-\alpha_1})+3\alpha_1^2m_4\\m_4=\frac{3\alpha_0^2(1+\alpha_1)}{(1-\alpha_1)(1-3\alpha_1^2)}
E(at4∣Ft−1)=3[E(at2∣Ft−1)]2=3(α0+α1at−12)2E(at4)=E[E(at4∣Ft−1)]=3E[(α0+α1at−12)2]=3E[α02+2α0α1at−12+α12at−14]=m4m4=3[α02+2α0α1Var(at)+α12m4]=3α02(1+21−α1α1)+3α12m4m4=(1−α1)(1−3α12)3α02(1+α1)
因为四阶矩为正,所以要满足
1
−
3
α
1
2
>
1
→
0
≤
α
1
2
<
1
3
1-3\alpha_1^2>1\to0\leq\alpha_1^2<\dfrac{1}{3}
1−3α12>1→0≤α12<31。
a
t
a_t
at 的无条件峰度是:
E
(
a
t
4
)
[
V
a
r
(
a
t
)
]
2
=
3
1
−
α
1
2
1
−
3
α
1
2
>
3
\frac{E(a_t^4)}{[Var(a_t)]^2}=3\frac{1-\alpha_1^2}{1-3\alpha_1^2}>3
[Var(at)]2E(at4)=31−3α121−α12>3
所以有”厚尾“。
ARCH(1)的估计
用条件极大似然估计法估计。
r
t
=
ϕ
0
+
ϕ
1
r
t
−
1
+
a
t
,
a
t
=
σ
t
ε
t
,
ε
t
∼
i
.
i
.
d
N
(
0
,
1
)
σ
t
2
=
α
0
+
α
1
a
t
−
1
2
r
T
∣
F
T
−
1
∼
N
(
ϕ
0
+
ϕ
1
r
T
−
1
,
σ
T
2
)
r
T
−
1
∣
F
T
−
2
∼
N
(
ϕ
0
+
ϕ
1
r
T
−
2
,
σ
T
−
1
2
)
r_t=\phi_0+\phi_1r_{t-1}+a_t,a_t=\sigma_t\varepsilon_t,\varepsilon_t\sim^{i.i.d}N(0,1)\\\sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2\\r_T|F_{T-1}\sim N(\phi_0+\phi_1r_{T-1},\sigma_T^2)\\r_{T-1}|F_{T-2}\sim N(\phi_0+\phi_1r_{T-2},\sigma_{T-1}^2)
rt=ϕ0+ϕ1rt−1+at,at=σtεt,εt∼i.i.dN(0,1)σt2=α0+α1at−12rT∣FT−1∼N(ϕ0+ϕ1rT−1,σT2)rT−1∣FT−2∼N(ϕ0+ϕ1rT−2,σT−12)
ARCH(1)模型的似然函数如下:
f
T
(
r
1
,
⋯
,
r
T
)
=
f
T
∣
T
−
1
(
r
T
∣
r
T
−
1
,
⋯
,
r
1
)
f
T
−
1
(
r
T
−
1
,
⋯
,
r
1
)
=
f
T
∣
T
−
1
(
r
T
∣
F
t
−
1
)
f
T
−
1
∣
T
−
2
(
r
T
−
1
∣
F
t
−
2
)
f
T
−
2
(
r
T
−
2
,
⋯
,
r
1
)
=
⋯
=
f
T
∣
T
−
1
(
r
T
∣
F
t
−
1
)
⋯
f
2
∣
1
(
r
2
∣
r
1
)
f
(
r
1
)
=
∏
t
=
2
T
1
2
π
σ
t
2
exp
[
−
(
r
t
−
ϕ
0
−
ϕ
1
r
t
−
1
)
2
2
σ
t
2
]
f
(
r
1
)
l
o
g
l
i
k
e
l
i
h
o
o
d
=
∑
t
=
2
T
[
−
1
2
log
(
2
π
)
−
1
2
log
σ
t
2
−
(
r
t
−
ϕ
0
−
ϕ
1
r
t
−
1
)
2
2
σ
t
2
]
σ
t
2
=
α
0
+
α
1
[
r
t
−
1
−
ϕ
0
−
ϕ
1
r
t
−
2
]
2
f_T(r_1,\cdots,r_T)=f_{T|T-1}(r_T|r_{T-1},\cdots,r_1)f_{T-1}(r_{T-1},\cdots,r_1)\\=f_{T|T-1}(r_T|F_{t-1})f_{T-1|T-2}(r_{T-1}|F_{t-2})f_{T-2}(r_{T-2},\cdots,r_1)\\=\cdots\\=f_{T|T-1}(r_T|F_{t-1})\cdots f_{2|1}(r_2|r_1)f(r_1)\\=\prod_{t=2}^T\frac{1}{\sqrt{2\pi\sigma_t^2}}\exp[-\frac{(r_t-\phi_0-\phi_1r_{t-1})^2}{2\sigma_t^2}]f(r_1)\\log\ likelihood=\sum_{t=2}^T[-\frac{1}{2}\log(2\pi)-\frac{1}{2}\log\sigma_t^2-\frac{(r_t-\phi_0-\phi_1r_{t-1})^2}{2\sigma_t^2}]\\\sigma_t^2=\alpha_0+\alpha_1[r_{t-1}-\phi_0-\phi_1r_{t-2}]^2
fT(r1,⋯,rT)=fT∣T−1(rT∣rT−1,⋯,r1)fT−1(rT−1,⋯,r1)=fT∣T−1(rT∣Ft−1)fT−1∣T−2(rT−1∣Ft−2)fT−2(rT−2,⋯,r1)=⋯=fT∣T−1(rT∣Ft−1)⋯f2∣1(r2∣r1)f(r1)=t=2∏T2πσt21exp[−2σt2(rt−ϕ0−ϕ1rt−1)2]f(r1)log likelihood=t=2∑T[−21log(2π)−21logσt2−2σt2(rt−ϕ0−ϕ1rt−1)2]σt2=α0+α1[rt−1−ϕ0−ϕ1rt−2]2
构建ARCH模型
- 构建均值效应模型并检验ARCH效应: H 0 : H_0: H0: 没有ARCH效应; H a : H_a: Ha: 有ARCH效应。使用残差平方项 { a ^ t 2 } \{\hat a_t^2\} {a^t2} 的Q统计量或LM检验。
- 确定阶数:使用残差平方项 { a ^ t 2 } \{\hat a_t^2\} {a^t2} 的PACF定阶。
- 估计:条件极大似然估计法
- 模型检验
- 预测
检验ARCH效应
H 0 : α 1 = α 2 = ⋯ = α m = 0 ; H a : H_0:\alpha_1=\alpha_2=\cdots=\alpha_m=0;H_a: H0:α1=α2=⋯=αm=0;Ha: 至少有一个 α i ≠ 0 \alpha_i\neq0 αi=0。
- 计算残差 { a ^ t } \{\hat a_t\} {a^t}
- 应用 { a ^ t } \{\hat a_t\} {a^t} 序列的LB统计量 Q ( m ) Q(m) Q(m)。
简单的LM检验:
-
计算残差 { a ^ t } \{\hat a_t\} {a^t}
-
估计辅助回归:
a ^ t 2 = α 0 + α 1 a ^ t − 1 2 + α m a ^ t − m 2 + e t \hat a_t^2=\alpha_0+\alpha_1\hat a_{t-1}^2+\alpha_m\hat a_{t-m}^2+e_t a^t2=α0+α1a^t−12+αma^t−m2+et
获得 R 2 ≡ R A U X 2 R^2\equiv R^2_{AUX} R2≡RAUX2。 -
构造LM检验统计量:
L M A R C H = T ⋅ R A U X 2 LM_{ARCH}=T·R^2_{AUX} LMARCH=T⋅RAUX2
其中 T T T 是辅助回归中的样本大小。在零假设条件下, L M A R C H LM_{ARCH} LMARCH 渐进服从 χ 2 ( m ) \chi^2(m) χ2(m) 分布。
模型检验
对于一个恰好的ARCH模型,标准化的误差:
a
~
t
=
a
t
σ
t
\tilde a_t=\frac{a_t}{\sigma_t}
a~t=σtat
是一个独立同分布的随机变量。所以,我们可以来检验序列
{
a
~
t
}
\{\tilde a_t\}
{a~t}:
- { a ~ t } \{\tilde a_t\} {a~t} 的LB统计量可以用来检验均值方程的准确性。
- { a ~ t 2 } \{\tilde a_t^2\} {a~t2} 的LB统计量可以用来检验波动率方程的准确性。
- { a ~ t } \{\tilde a_t\} {a~t} 的峰度、偏度、QQ plot可以用来检验分布假设的有效性。
预测
一步预测:
σ
h
+
1
2
=
α
0
+
α
1
a
h
2
+
⋯
+
α
m
a
h
+
1
−
m
2
σ
h
2
(
1
)
=
E
[
σ
h
+
1
2
∣
F
h
]
=
σ
h
+
1
2
=
α
0
+
α
1
a
h
2
+
⋯
+
α
m
a
h
+
1
−
m
2
\sigma_{h+1}^2=\alpha_0+\alpha_1a_h^2+\cdots+\alpha_ma_{h+1-m}^2\\\sigma_h^2(1)=E[\sigma_{h+1}^2|F_h]=\sigma_{h+1}^2=\alpha_0+\alpha_1a_h^2+\cdots+\alpha_ma_{h+1-m}^2
σh+12=α0+α1ah2+⋯+αmah+1−m2σh2(1)=E[σh+12∣Fh]=σh+12=α0+α1ah2+⋯+αmah+1−m2
两步预测:
σ
h
+
2
2
=
α
0
+
α
1
a
h
+
1
2
+
⋯
+
α
m
a
h
+
1
−
m
2
σ
h
2
(
2
)
=
E
[
σ
h
+
2
2
∣
F
h
]
=
α
0
+
α
1
E
[
a
h
+
1
2
∣
F
h
]
+
α
2
a
h
2
+
⋯
+
α
m
a
h
+
2
−
m
2
=
α
0
+
α
1
σ
h
2
(
1
)
+
α
2
a
h
2
+
⋯
+
α
m
a
h
+
2
−
m
2
\sigma_{h+2}^2=\alpha_0+\alpha_1a_{h+1}^2+\cdots+\alpha_ma_{h+1-m}^2\\\sigma_h^2(2)=E[\sigma_{h+2}^2|F_h]=\alpha_0+\alpha_1E[a_{h+1}^2|F_h]+\alpha_2a_h^2+\cdots+\alpha_ma_{h+2-m}^2\\=\alpha_0+\alpha_1\sigma_h^2(1)+\alpha_2a_h^2+\cdots+\alpha_ma_{h+2-m}^2
σh+22=α0+α1ah+12+⋯+αmah+1−m2σh2(2)=E[σh+22∣Fh]=α0+α1E[ah+12∣Fh]+α2ah2+⋯+αmah+2−m2=α0+α1σh2(1)+α2ah2+⋯+αmah+2−m2
l步预测:
σ
h
2
(
l
)
=
α
0
+
∑
i
=
1
m
α
i
σ
h
2
(
l
−
i
)
其
中
:
σ
h
2
(
l
−
i
)
=
a
h
+
l
−
i
2
,
如
果
l
−
i
≤
0
\sigma_h^2(l)=\alpha_0+\sum_{i=1}^m\alpha_i\sigma_h^2(l-i)\\其中:\sigma_h^2(l-i)=a_{h+l-i}^2,如果l-i\leq0
σh2(l)=α0+i=1∑mαiσh2(l−i)其中:σh2(l−i)=ah+l−i2,如果l−i≤0
优缺点
优点:简单;可预测波动率;厚尾(高峰度)。
缺点:正、负先验收益之间的对称性;受限制的参数空间。
GARCH模型
r t = E ( r t ∣ F t − 1 ) + a t , a t = σ t ε t σ t 2 = α 0 + ∑ i = 1 m α i a t − i 2 + ∑ j = 1 s β j σ t − j 2 r_t=E(r_t|F_{t-1})+a_t,a_t=\sigma_t\varepsilon_t\\\sigma_t^2=\alpha_0+\sum_{i=1}^m\alpha_ia_{t-i}^2+\sum_{j=1}^s\beta_j\sigma_{t-j}^2 rt=E(rt∣Ft−1)+at,at=σtεtσt2=α0+i=1∑mαiat−i2+j=1∑sβjσt−j2
其中 { ε t } \{\varepsilon_t\} {εt} 独立同分布,均值为0,方差为1。 α 0 > 0 , α i ≥ 0 , β j ≥ 0 , i > 0 , ∑ i = 1 max ( m , s ) ( α i + β i ) < 1 \alpha_0>0,\alpha_i\geq0,\beta_j\geq0,i>0,\sum_{i=1}^{\max(m,s)}(\alpha_i+\beta_i)<1 α0>0,αi≥0,βj≥0,i>0,∑i=1max(m,s)(αi+βi)<1。
{ a t } \{a_t\} {at} 的性质
误差
{
a
t
}
\{a_t\}
{at} 是不相关的、平稳的,均值为0,条件方差有限。
E
(
a
t
∣
F
t
−
1
)
=
0
,
E
(
a
t
)
=
0
,
E
(
a
t
a
t
−
j
)
=
0
,
j
≥
1
V
a
r
(
a
t
)
=
E
(
a
t
2
)
=
α
0
1
−
(
∑
i
=
1
m
α
i
)
−
(
∑
j
=
1
s
β
j
)
∑
i
=
1
max
(
m
,
s
)
(
α
i
+
β
i
)
<
1
E(a_t|F_{t-1})=0,E(a_t)=0,E(a_ta_{t-j})=0,j\geq1\\Var(a_t)=E(a_t^2)=\frac{\alpha_0}{1-(\sum_{i=1}^m\alpha_i)-(\sum_{j=1}^s\beta_j)}\\\sum_{i=1}^{\max(m,s)}(\alpha_i+\beta_i)<1
E(at∣Ft−1)=0,E(at)=0,E(atat−j)=0,j≥1Var(at)=E(at2)=1−(∑i=1mαi)−(∑j=1sβj)α0i=1∑max(m,s)(αi+βi)<1
条件异方差误差:
V
a
r
(
a
t
∣
F
t
−
1
)
=
E
(
a
t
2
∣
F
t
−
1
)
=
σ
t
2
E
(
ε
t
2
∣
F
t
−
1
)
=
σ
t
2
Var(a_t|F_{t-1})=E(a_t^2|F_{t-1})=\sigma_t^2E(\varepsilon_t^2|F_{t-1})=\sigma_t^2
Var(at∣Ft−1)=E(at2∣Ft−1)=σt2E(εt2∣Ft−1)=σt2
重新参数化:令
η
t
=
a
t
2
−
σ
t
2
\eta_t=a_t^2-\sigma_t^2
ηt=at2−σt2,
{
η
t
}
\{\eta_t\}
{ηt} 是不相关的序列,GARCH模型变成:
a
t
2
=
α
0
+
∑
i
=
1
max
(
m
,
s
)
(
α
i
+
β
i
)
a
t
−
i
2
+
η
t
−
∑
j
=
1
s
β
j
η
t
−
j
a_t^2=\alpha_0+\sum_{i=1}^{\max(m,s)}(\alpha_i+\beta_i)a_{t-i}^2+\eta_t-\sum_{j=1}^s\beta_j\eta_{t-j}
at2=α0+i=1∑max(m,s)(αi+βi)at−i2+ηt−j=1∑sβjηt−j
这是
{
a
t
2
}
\{a_t^2\}
{at2} 序列的ARMA形式。
GARCH(1,1)模型
σ t 2 = α 0 + α 1 a t − 1 2 + β 1 σ t − 1 2 \sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2+\beta_1\sigma_{t-1}^2 σt2=α0+α1at−12+β1σt−12
弱稳定性: 0 ≤ α 1 , β 1 < 1 , ( α 1 + β 1 ) < 1 0\leq\alpha_1,\beta_1<1,(\alpha_1+\beta_1)<1 0≤α1,β1<1,(α1+β1)<1。
非条件方差: σ ˉ 2 = α 0 1 − α 1 − β 1 \bar\sigma^2=\dfrac{\alpha_0}{1-\alpha_1-\beta_1} σˉ2=1−α1−β1α0。
波动性聚类
如果
1
−
2
α
1
2
−
(
α
1
+
β
1
)
2
>
0
1-2\alpha_1^2-(\alpha_1+\beta_1)^2>0
1−2α12−(α1+β1)2>0,则:
E
(
a
t
4
)
[
E
(
a
t
2
)
]
2
=
3
[
1
−
(
α
1
+
β
1
)
2
]
1
−
(
α
1
+
β
1
)
2
−
2
α
1
2
>
3
→
厚
尾
\frac{E(a_t^4)}{[E(a_t^2)]^2}=\frac{3[1-(\alpha_1+\beta_1)^2]}{1-(\alpha_1+\beta_1)^2-2\alpha_1^2}>3\to 厚尾
[E(at2)]2E(at4)=1−(α1+β1)2−2α123[1−(α1+β1)2]>3→厚尾
GARCH(1,1)模型的预测
一步预测:
σ
h
+
1
2
=
α
0
+
α
1
a
h
2
+
β
1
σ
h
2
σ
h
2
(
1
)
=
E
[
σ
h
+
1
2
∣
F
h
]
=
α
0
+
α
1
a
h
2
+
β
1
σ
h
2
\sigma_{h+1}^2=\alpha_0+\alpha_1a_h^2+\beta_1\sigma_h^2\\\sigma_h^2(1)=E[\sigma_{h+1}^2|F_h]=\alpha_0+\alpha_1a_h^2+\beta_1\sigma_h^2
σh+12=α0+α1ah2+β1σh2σh2(1)=E[σh+12∣Fh]=α0+α1ah2+β1σh2
两步预测:
σ
h
+
2
2
=
α
0
+
α
1
a
h
+
1
2
+
β
1
σ
h
+
1
2
σ
h
2
(
2
)
=
E
[
σ
h
+
2
2
∣
F
h
]
=
α
0
+
α
1
E
[
a
h
+
1
2
∣
F
h
]
+
β
1
σ
h
+
1
2
=
α
0
+
(
α
1
+
β
1
)
σ
h
2
(
1
)
\sigma_{h+2}^2=\alpha_0+\alpha_1a_{h+1}^2+\beta_1\sigma_{h+1}^2\\\sigma_h^2(2)=E[\sigma_{h+2}^2|F_h]=\alpha_0+\alpha_1E[a_{h+1}^2|F_h]+\beta_1\sigma_{h+1}^2\\=\alpha_0+(\alpha_1+\beta_1)\sigma_h^2(1)
σh+22=α0+α1ah+12+β1σh+12σh2(2)=E[σh+22∣Fh]=α0+α1E[ah+12∣Fh]+β1σh+12=α0+(α1+β1)σh2(1)
l步预测:
σ
h
2
(
l
)
=
α
0
+
(
α
1
+
β
1
)
σ
h
2
(
l
−
1
)
,
l
>
1
\sigma_h^2(l)=\alpha_0+(\alpha_1+\beta_1)\sigma_h^2(l-1),l>1
σh2(l)=α0+(α1+β1)σh2(l−1),l>1
GARCH模型的区间预测
一步预测:
V
a
r
(
r
h
+
1
∣
F
h
)
=
σ
h
2
(
1
)
=
σ
h
+
1
Var(r_{h+1}|F_h)=\sigma_h^2(1)=\sigma_{h+1}
Var(rh+1∣Fh)=σh2(1)=σh+1
一步预测95%的置信区间为:
[
E
(
r
h
+
1
∣
F
h
)
−
1.96
σ
h
(
1
)
,
E
(
r
h
+
1
∣
F
h
)
+
1.96
σ
h
(
1
)
]
[E(r_{h+1}|F_h)-1.96\sigma_h(1),E(r_{h+1}|F_h)+1.96\sigma_h(1)]
[E(rh+1∣Fh)−1.96σh(1),E(rh+1∣Fh)+1.96σh(1)]
考虑一个AR(1)-GARCH(1,1)模型:
r
t
=
ϕ
0
+
ϕ
1
r
t
−
1
+
a
t
,
a
t
=
σ
t
ε
t
,
ε
t
∼
i
.
i
.
d
.
N
(
0
,
1
)
σ
t
2
=
α
0
+
α
1
a
t
−
1
2
+
β
1
σ
t
−
1
2
r_t=\phi_0+\phi_1r_{t-1}+a_t,a_t=\sigma_t\varepsilon_t,\varepsilon_t\sim i.i.d.N(0,1)\\\sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2+\beta_1\sigma_{t-1}^2
rt=ϕ0+ϕ1rt−1+at,at=σtεt,εt∼i.i.d.N(0,1)σt2=α0+α1at−12+β1σt−12
一步预测95%的置信区间为:
[
ϕ
0
+
ϕ
1
r
h
−
1.96
α
0
+
α
1
a
h
2
+
β
1
σ
h
2
,
ϕ
0
+
ϕ
1
r
h
+
1.96
α
0
+
α
1
a
h
2
+
β
1
σ
h
2
]
[\phi_0+\phi_1r_h-1.96\sqrt{\alpha_0+\alpha_1a_h^2+\beta_1\sigma_h^2},\phi_0+\phi_1r_h+1.96\sqrt{\alpha_0+\alpha_1a_h^2+\beta_1\sigma_h^2}]
[ϕ0+ϕ1rh−1.96α0+α1ah2+β1σh2,ϕ0+ϕ1rh+1.96α0+α1ah2+β1σh2]
两步预测:
r
h
+
2
=
ϕ
0
(
1
+
ϕ
1
)
+
ϕ
1
2
r
h
+
ϕ
1
a
h
+
1
+
a
h
+
2
r
h
(
2
)
=
E
(
r
h
+
2
∣
F
h
)
=
ϕ
0
(
1
+
ϕ
1
)
+
ϕ
1
2
r
h
V
a
r
(
r
h
+
2
∣
F
h
)
=
V
a
r
(
ϕ
1
a
h
+
1
+
a
h
+
2
∣
F
h
)
=
ϕ
1
2
V
a
r
(
a
h
+
1
∣
F
h
)
+
V
a
r
(
a
h
+
2
∣
F
h
)
=
ϕ
1
2
σ
h
2
(
1
)
+
σ
h
2
(
2
)
=
ϕ
1
2
σ
h
2
(
1
)
+
α
0
+
(
α
1
+
β
1
)
σ
h
2
(
1
)
r_{h+2}=\phi_0(1+\phi_1)+\phi_1^2r_h+\phi_1a_{h+1}+a_{h+2}\\r_h(2)=E(r_{h+2}|F_h)=\phi_0(1+\phi_1)+\phi_1^2r_h\\Var(r_{h+2}|F_h)=Var(\phi_1a_{h+1}+a_{h+2}|F_h)\\=\phi_1^2Var(a_{h+1}|F_h)+Var(a_{h+2}|F_h)\\=\phi_1^2\sigma_h^2(1)+\sigma_h^2(2)\\=\phi_1^2\sigma_h^2(1)+\alpha_0+(\alpha_1+\beta_1)\sigma_h^2(1)
rh+2=ϕ0(1+ϕ1)+ϕ12rh+ϕ1ah+1+ah+2rh(2)=E(rh+2∣Fh)=ϕ0(1+ϕ1)+ϕ12rhVar(rh+2∣Fh)=Var(ϕ1ah+1+ah+2∣Fh)=ϕ12Var(ah+1∣Fh)+Var(ah+2∣Fh)=ϕ12σh2(1)+σh2(2)=ϕ12σh2(1)+α0+(α1+β1)σh2(1)
两步预测95%的置信区间为:
[
ϕ
0
(
1
+
ϕ
1
)
+
ϕ
1
2
r
h
−
1.96
α
0
+
(
α
1
+
β
1
+
ϕ
1
2
)
σ
h
2
(
1
)
,
ϕ
0
(
1
+
ϕ
1
)
+
ϕ
1
2
r
h
+
1.96
α
0
+
(
α
1
+
β
1
+
ϕ
1
2
)
σ
h
2
(
1
)
]
[\phi_0(1+\phi_1)+\phi_1^2r_h-1.96\sqrt{\alpha_0+(\alpha_1+\beta_1+\phi_1^2)\sigma_h^2(1)},\phi_0(1+\phi_1)+\phi_1^2r_h+1.96\sqrt{\alpha_0+(\alpha_1+\beta_1+\phi_1^2)\sigma_h^2(1)}]
[ϕ0(1+ϕ1)+ϕ12rh−1.96α0+(α1+β1+ϕ12)σh2(1),ϕ0(1+ϕ1)+ϕ12rh+1.96α0+(α1+β1+ϕ12)σh2(1)]
例子:标准普尔500指数从1926年开始的每月超额回报有792个观察值:
- 均值方程:AR(3)
- 检验ARCH效应
- 联合估计AR(3)-GARCH(1,1)
- 所有的AR系数都在统计上不显著
- 简化模型:AR(0)-GARCH(1,1)
- 模型检验:对 { a ~ t } , { a ~ t 2 } \{\tilde a_t\},\{\tilde a_t^2\} {a~t},{a~t2} 做Q检验
- 估计自由度
- 预测
IGARCH模型
波动率常常表现出非平稳性:
α
1
+
β
1
=
1
\alpha_1+\beta_1=1
α1+β1=1。一个IGARCH(1,1)模型如下:
a
t
=
σ
t
ε
t
,
σ
t
2
=
α
0
+
β
1
σ
t
−
1
2
+
(
1
−
β
1
)
a
t
−
1
2
a_t=\sigma_t\varepsilon_t,\sigma_t^2=\alpha_0+\beta_1\sigma_{t-1}^2+(1-\beta_1)a_{t-1}^2
at=σtεt,σt2=α0+β1σt−12+(1−β1)at−12
比如对于标准普尔500指数的每月超额回报,一个估计的IGARCH(1,1)模型为:
r t = 0.007 + a t , σ t 2 = 0.0001 + 0.806 σ t − 1 2 + 0.194 a t − 1 2 r_t=0.007+a_t,\sigma_t^2=0.0001+0.806\sigma_{t-1}^2+0.194a_{t-1}^2 rt=0.007+at,σt2=0.0001+0.806σt−12+0.194at−12
对于一个IGARCH(1,1)模型:
σ
h
2
(
l
)
=
σ
h
2
(
1
)
+
(
l
−
1
)
α
0
,
l
≥
1
\sigma_h^2(l)=\sigma_h^2(1)+(l-1)\alpha_0,l\geq1
σh2(l)=σh2(1)+(l−1)α0,l≥1
σ
h
2
(
1
)
\sigma_h^2(1)
σh2(1) 对未来波动率的影响是持久的,波动率的预测形成了一条斜率
=
α
0
=\alpha_0
=α0 的直线。
特殊情况: α 0 = 0 \alpha_0=0 α0=0。
如果 E [ log ( α 1 ε t 2 + β 1 ) ] < ∞ E[\log(\alpha_1\varepsilon_t^2+\beta_1)]<\infin E[log(α1εt2+β1)]<∞,则模型是严平稳的。
GARCH-in-Mean
条件均值规范:
r
t
=
A
R
M
A
(
p
,
q
)
+
β
′
X
t
r_t=ARMA(p,q)+\beta'X_t
rt=ARMA(p,q)+β′Xt
X
t
X_t
Xt 是一个解释性变量,可以是虚拟变量、市场收益、波动率。
外源解释变量也可以添加到条件方差公式中:
σ
t
2
=
G
A
R
C
H
(
p
.
q
)
+
δ
′
Z
t
\sigma_t^2=GARCH(p.q)+\delta'Z_t
σt2=GARCH(p.q)+δ′Zt
Z
t
Z_t
Zt 是一个解释变量。
金融理论认为波动性可能与资产风险溢价有关。GARCH-M模型允许时变性波动性与预期回报相关。
r
t
=
μ
+
c
g
(
σ
t
)
+
a
t
,
a
t
=
σ
t
ε
t
σ
t
2
=
α
0
+
α
1
a
t
−
1
2
+
β
1
σ
t
−
1
2
g
(
σ
t
)
=
{
σ
t
σ
t
2
log
(
σ
t
2
)
r_t=\mu+cg(\sigma_t)+a_t,a_t=\sigma_t\varepsilon_t\\\sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2+\beta_1\sigma_{t-1}^2\\g(\sigma_t)=\begin{cases}\sigma_t\\\sigma_t^2\\\log(\sigma_t^2)\end{cases}
rt=μ+cg(σt)+at,at=σtεtσt2=α0+α1at−12+β1σt−12g(σt)=⎩⎪⎨⎪⎧σtσt2log(σt2)
c
c
c 是风险溢价。
EGARCH模型
杠杆效应
EGARCH(m,s)模型的形式:
a
t
=
σ
t
ε
t
,
log
(
σ
t
2
)
=
α
0
+
∑
i
=
1
s
α
i
∣
a
t
−
i
∣
+
γ
i
a
t
−
i
σ
t
−
i
+
∑
j
=
1
m
β
j
log
(
σ
t
−
j
2
)
a_t=\sigma_t\varepsilon_t,\log(\sigma_t^2)=\alpha_0+\sum_{i=1}^s\alpha_i\frac{|a_{t-i}|+\gamma_ia_{t-i}}{\sigma_{t-i}}+\sum_{j=1}^m\beta_j\log(\sigma_{t-j}^2)
at=σtεt,log(σt2)=α0+i=1∑sαiσt−i∣at−i∣+γiat−i+j=1∑mβjlog(σt−j2)
γ
i
\gamma_i
γi 表示
a
t
−
i
a_{t-i}
at−i 的杠杆效应。实际应用中期望
γ
i
\gamma_i
γi 为负数。
TGARCH/GJR模型
TGARCH(s,m),或者GJR(s,m)模型定义为:
r
t
=
μ
t
+
a
t
,
a
t
=
σ
t
ε
t
σ
t
2
=
α
0
+
∑
i
=
1
s
(
α
i
+
γ
i
N
t
−
i
)
a
t
−
i
2
+
∑
j
=
1
m
β
j
σ
t
−
j
2
N
t
−
i
=
{
1
i
f
a
t
−
i
<
0
0
i
f
a
t
−
i
≥
0
r_t=\mu_t+a_t,a_t=\sigma_t\varepsilon_t\\\sigma_t^2=\alpha_0+\sum_{i=1}^s(\alpha_i+\gamma_iN_{t-i})a_{t-i}^2+\sum_{j=1}^m\beta_j\sigma_{t-j}^2\\N_{t-i}=\begin{cases}1\ \ if\ a_{t-i}<0\\0\ \ if\ a_{t-i}\geq0\end{cases}
rt=μt+at,at=σtεtσt2=α0+i=1∑s(αi+γiNt−i)at−i2+j=1∑mβjσt−j2Nt−i={1 if at−i<00 if at−i≥0
上面用0作为阈值。
当 a t − i a_{t-i} at−i 为正,总效应为 α i a t − i 2 \alpha_ia_{t-i}^2 αiat−i2
当 a t − i a_{t-i} at−i 为负,总效应为 ( α i + γ i ) a t − i 2 (\alpha_i+\gamma_i)a_{t-i}^2 (αi+γi)at−i2
APARCH模型
r t = μ t + a t , a t = σ t ε t , ε ∼ D ( 0 , 1 ) σ t δ = α 0 + ∑ i = 1 s α i ( ∣ a t − i ∣ − γ i a t − i ) δ + ∑ j = 1 m β j σ t − j δ r_t=\mu_t+a_t,a_t=\sigma_t\varepsilon_t,\varepsilon\sim D(0,1)\\\sigma_t^{\delta}=\alpha_0+\sum_{i=1}^s\alpha_i(|a_{t-i}|-\gamma_ia_{t-i})^{\delta}+\sum_{j=1}^m\beta_j\sigma_{t-j}^{\delta} rt=μt+at,at=σtεt,ε∼D(0,1)σtδ=α0+i=1∑sαi(∣at−i∣−γiat−i)δ+j=1∑mβjσt−jδ
其中 δ \delta δ 是非负的实数。杠杆效应表明 γ i > 0 \gamma_i>0 γi>0。
使用高频数据
令
r
t
m
r_t^m
rtm 为 第
t
t
t 个月的对数收益,
{
r
t
,
i
}
i
=
1
n
\{r_{t,i}\}^n_{i=1}
{rt,i}i=1n 是第
t
t
t 个月内的日度对数收益。根据对数收益的性质,有:
r
t
m
=
∑
i
=
1
n
r
t
,
i
r_t^m=\sum_{i=1}^nr_{t,i}
rtm=i=1∑nrt,i
假设条件方差和方差存在,我们有:
V
a
r
(
r
t
m
∣
F
t
−
1
)
=
∑
i
=
1
n
V
a
r
(
r
t
,
i
∣
F
t
−
1
)
+
2
∑
i
<
j
C
o
v
[
(
r
t
,
i
,
r
t
,
j
)
∣
F
t
−
1
]
Var(r_t^m|F_{t-1})=\sum_{i=1}^nVar(r_{t,i}|F_{t-1})+2\sum_{i<j}Cov[(r_{t,i},r_{t,j})|F_{t-1}]
Var(rtm∣Ft−1)=i=1∑nVar(rt,i∣Ft−1)+2i<j∑Cov[(rt,i,rt,j)∣Ft−1]
-
如果 { r t , i } \{r_{t,i}\} {rt,i} 是白噪声序列:
V a r ( r t m ∣ F t − 1 ) = n V a r ( r t , 1 ) Var(r_t^m|F_{t-1})=nVar(r_{t,1}) Var(rtm∣Ft−1)=nVar(rt,1)
V a r ( r t , 1 ) Var(r_{t,1}) Var(rt,1) 可以从日度收益 { r t , i } i = 1 n \{r_{t,i}\}^n_{i=1} {rt,i}i=1n 估计:
σ ^ 2 = ∑ i = 1 n ( r t , i − r ˉ t ) 2 n − 1 , r ˉ t = ∑ i = 1 n r t , i n \hat\sigma^2=\frac{\sum_{i=1}^n(r_{t,i}-\bar r_t)^2}{n-1},\bar r_t=\frac{\sum_{i=1}^nr_{t,i}}{n} σ^2=n−1∑i=1n(rt,i−rˉt)2,rˉt=n∑i=1nrt,i
估计的月度波动率为:
σ ^ m 2 = n n − 1 ∑ i = 1 n ( r t , i − r ˉ t ) 2 ≈ ∑ i = 1 n ( r t , i − r ˉ t ) 2 \hat\sigma_m^2=\frac{n}{n-1}\sum_{i=1}^n(r_{t,i}-\bar r_t)^2\approx\sum_{i=1}^n(r_{t,i}-\bar r_t)^2 σ^m2=n−1ni=1∑n(rt,i−rˉt)2≈i=1∑n(rt,i−rˉt)2 -
如果 { r t , i } \{r_{t,i}\} {rt,i} 是MA(1)模型,则:
V a r ( r t m ∣ F t − 1 ) = n V a r ( r t , 1 ) + 2 ( n − 1 ) C o v ( r t , 1 , t t , 2 ) Var(r_t^m|F_{t-1})=nVar(r_{t,1})+2(n-1)Cov(r_{t,1},t_{t,2}) Var(rtm∣Ft−1)=nVar(rt,1)+2(n−1)Cov(rt,1,tt,2)
可以被估计为:
σ ^ m 2 = n n − 1 ∑ i = 1 n ( r t , i − r ˉ t ) 2 + 2 ∑ i = 1 n − 1 ( r t , i − r ˉ t ) ( r t , i + 1 − r ˉ t ) \hat\sigma_m^2=\frac{n}{n-1}\sum_{i=1}^n(r_{t,i}-\bar r_t)^2+2\sum_{i=1}^{n-1}(r_{t,i}-\bar r_t)(r_{t,i+1}-\bar r_t) σ^m2=n−1ni=1∑n(rt,i−rˉt)2+2i=1∑n−1(rt,i−rˉt)(rt,i+1−rˉt)
如果样本均值 r ˉ t \bar r_t rˉt 为0,则 σ ^ m 2 ≈ ∑ i = 1 n r t , i 2 \hat\sigma_m^2\approx\sum_{i=1}^nr_{t,i}^2 σ^m2≈∑i=1nrt,i2。
令
r
t
r_t
rt 为资产的每日对数收益,
r
t
=
∑
i
=
1
n
r
t
,
i
r_t=\sum_{i=1}^nr_{t,i}
rt=∑i=1nrt,i。
R
V
t
=
∑
i
=
1
n
r
t
,
i
2
RV_t=\sum_{i=1}^nr_{t,i}^2
RVt=i=1∑nrt,i2
被称为
r
t
r_t
rt 的已实现波动率。
GARCH-MIDAS模型
波动性的短期和长期组成部分是分开的。MIDAS(混合数据抽样)方法用于将宏观经济变量与波动性的长期组成部分联系起来。
r
i
,
t
=
E
(
r
i
,
t
∣
F
i
−
1
,
t
)
+
a
i
,
t
,
a
i
,
t
=
τ
t
×
g
i
,
t
ε
i
,
t
r_{i,t}=E(r_{i,t}|F_{i-1,t})+a_{i,t},a_{i,t}=\sqrt{\tau_t\times g_{i,t}}\varepsilon_{i,t}
ri,t=E(ri,t∣Fi−1,t)+ai,t,ai,t=τt×gi,tεi,t
其中
r
i
,
t
r_{i,t}
ri,t 是第
t
t
t 个月的第
i
i
i 天的对数收益。
{
ε
i
,
t
}
\{\varepsilon_{i,t}\}
{εi,t} i.i.d 的标准正态变量。
短期波动性成分:
一个均值回转单位日度GARCH(1,1)过程:
g
i
,
t
=
(
1
−
α
−
β
)
+
α
a
i
,
t
2
τ
t
+
β
g
i
−
1
,
t
g_{i,t}=(1-\alpha-\beta)+\alpha\frac{a_{i,t}^2}{\tau_t}+\beta g_{i-1,t}
gi,t=(1−α−β)+ατtai,t2+βgi−1,t
一个均值回转单位GJR(1,1)过程:
g
i
,
t
=
(
1
−
α
−
β
−
γ
2
)
+
(
α
+
γ
×
I
(
a
i
,
t
<
0
)
)
a
i
,
t
2
τ
t
+
β
g
i
−
1
,
t
g_{i,t}=(1-\alpha-\beta-\frac{\gamma}{2})+(\alpha+\gamma\times I_{(a_{i,t}<0)})\frac{a_{i,t}^2}{\tau_t}+\beta g_{i-1,t}
gi,t=(1−α−β−2γ)+(α+γ×I(ai,t<0))τtai,t2+βgi−1,t
长期波动率成分:
τ
t
=
m
+
θ
∑
k
=
1
K
ϕ
k
(
w
1
,
w
2
)
R
V
t
−
k
,
R
V
t
=
∑
i
=
1
N
t
r
i
,
t
2
ϕ
k
(
w
)
=
{
(
k
/
K
)
w
1
−
1
−
(
1
−
k
/
K
)
w
2
−
1
∑
j
=
1
K
(
j
/
K
)
w
1
−
1
−
(
1
−
j
/
K
)
w
2
−
1
w
k
∑
j
=
1
K
w
j
\tau_t=m+\theta\sum_{k=1}^K\phi_k(w_1,w_2)RV_{t-k},RV_t=\sum_{i=1}^{N_t}r_{i,t}^2\\\phi_k(w)=\begin{cases}\frac{(k/K)^{w_1-1}-(1-k/K)^{w_2-1}}{\sum_{j=1}^K(j/K)^{w_1-1}-(1-j/K)^{w_2-1}}\\\frac{w^k}{\sum_{j=1}^Kw^j}\end{cases}
τt=m+θk=1∑Kϕk(w1,w2)RVt−k,RVt=i=1∑Ntri,t2ϕk(w)=⎩⎨⎧∑j=1K(j/K)w1−1−(1−j/K)w2−1(k/K)w1−1−(1−k/K)w2−1∑j=1Kwjwk
滚动窗口RV:
R
V
i
(
r
w
)
=
∑
i
=
1
N
′
r
i
−
j
2
RV_i^{(rw)}=\sum_{i=1}^{N'}r_{i-j}^2
RVi(rw)=i=1∑N′ri−j2
直接纳入宏观经济因素:
log
τ
t
=
m
l
+
θ
l
∑
k
=
1
K
l
ϕ
k
(
w
1
,
l
,
w
2
,
l
)
X
l
,
t
−
k
m
v
\log\tau_t=m_l+\theta_l\sum_{k=1}^{K_l}\phi_k(w_{1,l},w_{2,l})X_{l,t-k}^{mv}
logτt=ml+θlk=1∑Klϕk(w1,l,w2,l)Xl,t−kmv