金融计量模型(十一):对波动率和相关性建模

对波动率和相关性建模

引入波动率:

无波动率时:
r t = ϕ 0 + ϕ 1 r t − 1 + a t r_t=\phi_0+\phi_1r_{t-1}+a_t rt=ϕ0+ϕ1rt1+at
a t a_t at 是白噪声, V a r ( a t ) = σ a 2 Var(a_t)=\sigma_a^2 Var(at)=σa2
E ( r t + 1 ∣ F t ) = ϕ 0 + ϕ 1 r t e r r o r = a t + 1 , V a r ( e r r o r ) = σ a 2 95 %   C I : [ ϕ 0 + ϕ 1 r t − 1.96 σ a , ϕ 0 + ϕ 1 r t + 1.96 σ a ] E(r_{t+1}|F_t)=\phi_0+\phi_1r_t\\error=a_{t+1},Var(error)=\sigma_a^2\\95\%\ CI:[\phi_0+\phi_1r_t-1.96\sigma_a,\phi_0+\phi_1r_t+1.96\sigma_a] E(rt+1Ft)=ϕ0+ϕ1rterror=at+1,Var(error)=σa295% CI:[ϕ0+ϕ1rt1.96σa,ϕ0+ϕ1rt+1.96σa]
有波动率时: V a r ( a t + 1 ∣ F t ) Var(a_{t+1}|F_t) Var(at+1Ft) 是时变的。
V a r ( a t + 1 ∣ F t ) = E ( a t + 1 2 ∣ F t ) a t + 1 2 = α 0 + α 1 a t 2 + η t E ( a t + 1 2 ∣ F t ) = α 0 + α 1 a t 2 a t + 1 2 = E ( a t + 1 2 ∣ F t ) × ε t 2 a t + 1 = E ( a t + 1 2 ∣ F t ) × ε t , E ( ε t 2 ) = 1 Var(a_{t+1}|F_t)=E(a_{t+1}^2|F_t)\\a_{t+1}^2=\alpha_0+\alpha_1a_t^2+\eta_t\\E(a_{t+1}^2|F_t)=\alpha_0+\alpha_1a_t^2\\a_{t+1}^2=E(a_{t+1}^2|F_t)\times\varepsilon_t^2\\a_{t+1}=\sqrt{E(a_{t+1}^2|F_t)}\times\varepsilon_t,E(\varepsilon_t^2)=1 Var(at+1Ft)=E(at+12Ft)at+12=α0+α1at2+ηtE(at+12Ft)=α0+α1at2at+12=E(at+12Ft)×εt2at+1=E(at+12Ft) ×εt,E(εt2)=1

波动率

基本结构

r t = μ t + a t , μ t = ϕ 0 + ∑ i = 1 p ϕ i r t − i − ∑ i = 1 q θ i a t − i r_t=\mu_t+a_t,\mu_t=\phi_0+\sum_{i=1}^p\phi_ir_{t-i}-\sum_{i=1}^q\theta_ia_{t-i} rt=μt+at,μt=ϕ0+i=1pϕirtii=1qθiati

波动率模型与时间演化有关:
σ t 2 = V a r ( r t ∣ F t − 1 ) = V a r ( a t ∣ F t − 1 ) \sigma_t^2=Var(r_t|F_{t-1})=Var(a_t|F_{t-1}) σt2=Var(rtFt1)=Var(atFt1)
上述为波动率方程。return的条件方差以过去的信息为基础。

相关的过去信息:

  1. 历史时期的波动率信息: { a t − 1 2 , a t − 2 2 , ⋯   } \{a_{t-1}^2,a_{t-2}^2,\cdots\} {at12,at22,}
  2. 历史时期的模型拟合方差: { σ t − 1 2 , σ t − 2 2 , ⋯   } \{\sigma_{t-1}^2,\sigma_{t-2}^2,\cdots\} {σt12,σt22,}
  3. 其他过去信息

ARCH模型包含了第一项,GARCH模型同时包含了第一项和第二项。

单变量波动率模型

ARCH模型

ARCH(1)模型:
σ t 2 = α 0 + α 1 a t − 1 2 \sigma_{t}^2=\alpha_0+\alpha_1a_{t-1}^2 σt2=α0+α1at12
其中 α 1 ≥ 0 \alpha_1\geq0 α10

ARCH(m)模型:
r t = E ( r t ∣ F t − 1 ) + a t , a t = σ t ε t σ t 2 = α 0 + α 1 a t − 1 2 + ⋯ + α m a t − m 2 r_t=E(r_t|F_{t-1})+a_t,a_t=\sigma_t\varepsilon_t\\\sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2+\cdots+\alpha_ma_{t-m}^2 rt=E(rtFt1)+at,at=σtεtσt2=α0+α1at12++αmatm2
其中 { ε t } \{\varepsilon_t\} {εt} 独立同分布,均值为0,方差为1。 α 0 > 0 , α i ≥ 0 , i > 0 \alpha_0>0,\alpha_i\geq0,i>0 α0>0,αi0,i>0

{ a t } \{a_t\} {at} 的性质

E ( a t ∣ F t − 1 ) = E ( σ t ε t ∣ F t − 1 ) = σ t E ( ε t ∣ F t − 1 ) = 0 E ( a t ) = E [ E ( a t ∣ F t − 1 ) ] = 0 E ( a t a t − j ) = E [ E ( a t a t − j ∣ F t − 1 ) ] = E [ a t − j E ( a t ∣ F t − 1 ) ] = 0 , j ≥ 1 V a r ( a t ) = E ( a t 2 ) = E [ E ( a t 2 ∣ F t − 1 ) ] = E ( σ t 2 ) E(a_t|F_{t-1})=E(\sigma_t\varepsilon_t|F_{t-1})=\sigma_tE(\varepsilon_t|F_{t-1})=0\\E(a_t)=E[E(a_t|F_{t-1})]=0\\E(a_ta_{t-j})=E[E(a_ta_{t-j}|F_{t-1})]=E[a_{t-j}E(a_t|F_{t-1})]=0,j\geq1\\Var(a_t)=E(a_t^2)=E[E(a_t^2|F_{t-1})]=E(\sigma_t^2) E(atFt1)=E(σtεtFt1)=σtE(εtFt1)=0E(at)=E[E(atFt1)]=0E(atatj)=E[E(atatjFt1)]=E[atjE(atFt1)]=0,j1Var(at)=E(at2)=E[E(at2Ft1)]=E(σt2)

条件异方差误差:
V a r ( a t ∣ F t − 1 ) = E ( a t 2 ∣ F t − 1 ) = σ t 2 E ( ε t 2 ∣ F t − 1 ) = σ t 2 Var(a_t|F_{t-1})=E(a_t^2|F_{t-1})=\sigma_t^2E(\varepsilon_t^2|F_{t-1})=\sigma_t^2 Var(atFt1)=E(at2Ft1)=σt2E(εt2Ft1)=σt2
重新参数化:令 η t = a t 2 − σ t 2 \eta_t=a_t^2-\sigma_t^2 ηt=at2σt2 { η t } \{\eta_t\} {ηt} 是不相关的序列,均值为0,ARCH模型变成:
a t 2 = α 0 + α 1 a t − 1 2 + ⋯ + α m a t − m 2 + η t a_t^2=\alpha_0+\alpha_1a_{t-1}^2+\cdots+\alpha_ma_{t-m}^2+\eta_t at2=α0+α1at12++αmatm2+ηt
上式是 { a t 2 } \{a_t^2\} {at2} 序列的AR(m)模型,可用PACF判断ARCH的阶数m。

假设平稳( α 1 + ⋯ + α m < 1 \alpha_1+\cdots+\alpha_m<1 α1++αm<1):
E ( σ t 2 ) = α 0 + α 1 E ( a t − 1 2 ) + ⋯ + α m E ( a t − m 2 ) = α 0 + α 1 E ( σ t 2 ) + ⋯ + α m E ( σ t 2 ) E ( σ t 2 ) = σ ˉ 2 = α 0 1 − α 1 − ⋯ − α m E(\sigma_t^2)=\alpha_0+\alpha_1E(a_{t-1}^2)+\cdots+\alpha_mE(a_{t-m}^2)=\alpha_0+\alpha_1E(\sigma_t^2)+\cdots+\alpha_mE(\sigma_t^2)\\E(\sigma_t^2)=\bar\sigma^2=\frac{\alpha_0}{1-\alpha_1-\cdots-\alpha_m} E(σt2)=α0+α1E(at12)++αmE(atm2)=α0+α1E(σt2)++αmE(σt2)E(σt2)=σˉ2=1α1αmα0

ARCH(1)的性质

考虑一个ARCH(1)模型:
a t = σ t ε t , σ t 2 = α 0 + α 1 a t − 1 2 a_t=\sigma_t\varepsilon_t,\sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2 at=σtεt,σt2=α0+α1at12
其中 α 0 > 0 , α 1 ≥ 0 \alpha_0>0,\alpha_1\geq0 α0>0,α10
E ( a t ) = 0 V a r ( a t ) = α 0 1 − α 1   i f   0 ≤ α 1 < 1 E(a_t)=0\\Var(a_t)=\frac{\alpha_0}{1-\alpha_1}\ if\ 0\leq\alpha_1<1\\ E(at)=0Var(at)=1α1α0 if 0α1<1
假设 ε t \varepsilon_t εt 服从正态分布,则有
E ( a t 4 ∣ F t − 1 ) = 3 [ E ( a t 2 ∣ F t − 1 ) ] 2 = 3 ( α 0 + α 1 a t − 1 2 ) 2 E ( a t 4 ) = E [ E ( a t 4 ∣ F t − 1 ) ] = 3 E [ ( α 0 + α 1 a t − 1 2 ) 2 ] = 3 E [ α 0 2 + 2 α 0 α 1 a t − 1 2 + α 1 2 a t − 1 4 ] = m 4 m 4 = 3 [ α 0 2 + 2 α 0 α 1 V a r ( a t ) + α 1 2 m 4 ] = 3 α 0 2 ( 1 + 2 α 1 1 − α 1 ) + 3 α 1 2 m 4 m 4 = 3 α 0 2 ( 1 + α 1 ) ( 1 − α 1 ) ( 1 − 3 α 1 2 ) E(a_t^4|F_{t-1})=3[E(a_t^2|F_{t-1})]^2=3(\alpha_0+\alpha_1a_{t-1}^2)^2\\E(a_t^4)=E[E(a_t^4|F_{t-1})]=3E[(\alpha_0+\alpha_1a_{t-1}^2)^2]=3E[\alpha_0^2+2\alpha_0\alpha_1a_{t-1}^2+\alpha_1^2a_{t-1}^4]=m_4\\m_4=3[\alpha_0^2+2\alpha_0\alpha_1Var(a_t)+\alpha_1^2m_4]=3\alpha_0^2(1+2\frac{\alpha_1}{1-\alpha_1})+3\alpha_1^2m_4\\m_4=\frac{3\alpha_0^2(1+\alpha_1)}{(1-\alpha_1)(1-3\alpha_1^2)} E(at4Ft1)=3[E(at2Ft1)]2=3(α0+α1at12)2E(at4)=E[E(at4Ft1)]=3E[(α0+α1at12)2]=3E[α02+2α0α1at12+α12at14]=m4m4=3[α02+2α0α1Var(at)+α12m4]=3α02(1+21α1α1)+3α12m4m4=(1α1)(13α12)3α02(1+α1)
因为四阶矩为正,所以要满足 1 − 3 α 1 2 > 1 → 0 ≤ α 1 2 < 1 3 1-3\alpha_1^2>1\to0\leq\alpha_1^2<\dfrac{1}{3} 13α12>10α12<31

a t a_t at 的无条件峰度是:
E ( a t 4 ) [ V a r ( a t ) ] 2 = 3 1 − α 1 2 1 − 3 α 1 2 > 3 \frac{E(a_t^4)}{[Var(a_t)]^2}=3\frac{1-\alpha_1^2}{1-3\alpha_1^2}>3 [Var(at)]2E(at4)=313α121α12>3
所以有”厚尾“。

ARCH(1)的估计

用条件极大似然估计法估计。
r t = ϕ 0 + ϕ 1 r t − 1 + a t , a t = σ t ε t , ε t ∼ i . i . d N ( 0 , 1 ) σ t 2 = α 0 + α 1 a t − 1 2 r T ∣ F T − 1 ∼ N ( ϕ 0 + ϕ 1 r T − 1 , σ T 2 ) r T − 1 ∣ F T − 2 ∼ N ( ϕ 0 + ϕ 1 r T − 2 , σ T − 1 2 ) r_t=\phi_0+\phi_1r_{t-1}+a_t,a_t=\sigma_t\varepsilon_t,\varepsilon_t\sim^{i.i.d}N(0,1)\\\sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2\\r_T|F_{T-1}\sim N(\phi_0+\phi_1r_{T-1},\sigma_T^2)\\r_{T-1}|F_{T-2}\sim N(\phi_0+\phi_1r_{T-2},\sigma_{T-1}^2) rt=ϕ0+ϕ1rt1+at,at=σtεt,εti.i.dN(0,1)σt2=α0+α1at12rTFT1N(ϕ0+ϕ1rT1,σT2)rT1FT2N(ϕ0+ϕ1rT2,σT12)
ARCH(1)模型的似然函数如下:
f T ( r 1 , ⋯   , r T ) = f T ∣ T − 1 ( r T ∣ r T − 1 , ⋯   , r 1 ) f T − 1 ( r T − 1 , ⋯   , r 1 ) = f T ∣ T − 1 ( r T ∣ F t − 1 ) f T − 1 ∣ T − 2 ( r T − 1 ∣ F t − 2 ) f T − 2 ( r T − 2 , ⋯   , r 1 ) = ⋯ = f T ∣ T − 1 ( r T ∣ F t − 1 ) ⋯ f 2 ∣ 1 ( r 2 ∣ r 1 ) f ( r 1 ) = ∏ t = 2 T 1 2 π σ t 2 exp ⁡ [ − ( r t − ϕ 0 − ϕ 1 r t − 1 ) 2 2 σ t 2 ] f ( r 1 ) l o g   l i k e l i h o o d = ∑ t = 2 T [ − 1 2 log ⁡ ( 2 π ) − 1 2 log ⁡ σ t 2 − ( r t − ϕ 0 − ϕ 1 r t − 1 ) 2 2 σ t 2 ] σ t 2 = α 0 + α 1 [ r t − 1 − ϕ 0 − ϕ 1 r t − 2 ] 2 f_T(r_1,\cdots,r_T)=f_{T|T-1}(r_T|r_{T-1},\cdots,r_1)f_{T-1}(r_{T-1},\cdots,r_1)\\=f_{T|T-1}(r_T|F_{t-1})f_{T-1|T-2}(r_{T-1}|F_{t-2})f_{T-2}(r_{T-2},\cdots,r_1)\\=\cdots\\=f_{T|T-1}(r_T|F_{t-1})\cdots f_{2|1}(r_2|r_1)f(r_1)\\=\prod_{t=2}^T\frac{1}{\sqrt{2\pi\sigma_t^2}}\exp[-\frac{(r_t-\phi_0-\phi_1r_{t-1})^2}{2\sigma_t^2}]f(r_1)\\log\ likelihood=\sum_{t=2}^T[-\frac{1}{2}\log(2\pi)-\frac{1}{2}\log\sigma_t^2-\frac{(r_t-\phi_0-\phi_1r_{t-1})^2}{2\sigma_t^2}]\\\sigma_t^2=\alpha_0+\alpha_1[r_{t-1}-\phi_0-\phi_1r_{t-2}]^2 fT(r1,,rT)=fTT1(rTrT1,,r1)fT1(rT1,,r1)=fTT1(rTFt1)fT1T2(rT1Ft2)fT2(rT2,,r1)==fTT1(rTFt1)f21(r2r1)f(r1)=t=2T2πσt2 1exp[2σt2(rtϕ0ϕ1rt1)2]f(r1)log likelihood=t=2T[21log(2π)21logσt22σt2(rtϕ0ϕ1rt1)2]σt2=α0+α1[rt1ϕ0ϕ1rt2]2

构建ARCH模型
  1. 构建均值效应模型并检验ARCH效应: H 0 : H_0: H0: 没有ARCH效应; H a : H_a: Ha: 有ARCH效应。使用残差平方项 { a ^ t 2 } \{\hat a_t^2\} {a^t2} 的Q统计量或LM检验。
  2. 确定阶数:使用残差平方项 { a ^ t 2 } \{\hat a_t^2\} {a^t2} 的PACF定阶。
  3. 估计:条件极大似然估计法
  4. 模型检验
  5. 预测
检验ARCH效应

H 0 : α 1 = α 2 = ⋯ = α m = 0 ; H a : H_0:\alpha_1=\alpha_2=\cdots=\alpha_m=0;H_a: H0:α1=α2==αm=0;Ha: 至少有一个 α i ≠ 0 \alpha_i\neq0 αi=0

  1. 计算残差 { a ^ t } \{\hat a_t\} {a^t}
  2. 应用 { a ^ t } \{\hat a_t\} {a^t} 序列的LB统计量 Q ( m ) Q(m) Q(m)

简单的LM检验:

  1. 计算残差 { a ^ t } \{\hat a_t\} {a^t}

  2. 估计辅助回归:
    a ^ t 2 = α 0 + α 1 a ^ t − 1 2 + α m a ^ t − m 2 + e t \hat a_t^2=\alpha_0+\alpha_1\hat a_{t-1}^2+\alpha_m\hat a_{t-m}^2+e_t a^t2=α0+α1a^t12+αma^tm2+et
    获得 R 2 ≡ R A U X 2 R^2\equiv R^2_{AUX} R2RAUX2

  3. 构造LM检验统计量:
    L M A R C H = T ⋅ R A U X 2 LM_{ARCH}=T·R^2_{AUX} LMARCH=TRAUX2
    其中 T T T 是辅助回归中的样本大小。在零假设条件下, L M A R C H LM_{ARCH} LMARCH 渐进服从 χ 2 ( m ) \chi^2(m) χ2(m) 分布。

模型检验

对于一个恰好的ARCH模型,标准化的误差:
a ~ t = a t σ t \tilde a_t=\frac{a_t}{\sigma_t} a~t=σtat
是一个独立同分布的随机变量。所以,我们可以来检验序列 { a ~ t } \{\tilde a_t\} {a~t}

  1. { a ~ t } \{\tilde a_t\} {a~t} 的LB统计量可以用来检验均值方程的准确性。
  2. { a ~ t 2 } \{\tilde a_t^2\} {a~t2} 的LB统计量可以用来检验波动率方程的准确性。
  3. { a ~ t } \{\tilde a_t\} {a~t} 的峰度、偏度、QQ plot可以用来检验分布假设的有效性。
预测

一步预测
σ h + 1 2 = α 0 + α 1 a h 2 + ⋯ + α m a h + 1 − m 2 σ h 2 ( 1 ) = E [ σ h + 1 2 ∣ F h ] = σ h + 1 2 = α 0 + α 1 a h 2 + ⋯ + α m a h + 1 − m 2 \sigma_{h+1}^2=\alpha_0+\alpha_1a_h^2+\cdots+\alpha_ma_{h+1-m}^2\\\sigma_h^2(1)=E[\sigma_{h+1}^2|F_h]=\sigma_{h+1}^2=\alpha_0+\alpha_1a_h^2+\cdots+\alpha_ma_{h+1-m}^2 σh+12=α0+α1ah2++αmah+1m2σh2(1)=E[σh+12Fh]=σh+12=α0+α1ah2++αmah+1m2
两步预测
σ h + 2 2 = α 0 + α 1 a h + 1 2 + ⋯ + α m a h + 1 − m 2 σ h 2 ( 2 ) = E [ σ h + 2 2 ∣ F h ] = α 0 + α 1 E [ a h + 1 2 ∣ F h ] + α 2 a h 2 + ⋯ + α m a h + 2 − m 2 = α 0 + α 1 σ h 2 ( 1 ) + α 2 a h 2 + ⋯ + α m a h + 2 − m 2 \sigma_{h+2}^2=\alpha_0+\alpha_1a_{h+1}^2+\cdots+\alpha_ma_{h+1-m}^2\\\sigma_h^2(2)=E[\sigma_{h+2}^2|F_h]=\alpha_0+\alpha_1E[a_{h+1}^2|F_h]+\alpha_2a_h^2+\cdots+\alpha_ma_{h+2-m}^2\\=\alpha_0+\alpha_1\sigma_h^2(1)+\alpha_2a_h^2+\cdots+\alpha_ma_{h+2-m}^2 σh+22=α0+α1ah+12++αmah+1m2σh2(2)=E[σh+22Fh]=α0+α1E[ah+12Fh]+α2ah2++αmah+2m2=α0+α1σh2(1)+α2ah2++αmah+2m2
l步预测
σ h 2 ( l ) = α 0 + ∑ i = 1 m α i σ h 2 ( l − i ) 其 中 : σ h 2 ( l − i ) = a h + l − i 2 , 如 果 l − i ≤ 0 \sigma_h^2(l)=\alpha_0+\sum_{i=1}^m\alpha_i\sigma_h^2(l-i)\\其中:\sigma_h^2(l-i)=a_{h+l-i}^2,如果l-i\leq0 σh2(l)=α0+i=1mαiσh2(li)σh2(li)=ah+li2,li0

优缺点

优点:简单;可预测波动率;厚尾(高峰度)。

缺点:正、负先验收益之间的对称性;受限制的参数空间。

GARCH模型

r t = E ( r t ∣ F t − 1 ) + a t , a t = σ t ε t σ t 2 = α 0 + ∑ i = 1 m α i a t − i 2 + ∑ j = 1 s β j σ t − j 2 r_t=E(r_t|F_{t-1})+a_t,a_t=\sigma_t\varepsilon_t\\\sigma_t^2=\alpha_0+\sum_{i=1}^m\alpha_ia_{t-i}^2+\sum_{j=1}^s\beta_j\sigma_{t-j}^2 rt=E(rtFt1)+at,at=σtεtσt2=α0+i=1mαiati2+j=1sβjσtj2

其中 { ε t } \{\varepsilon_t\} {εt} 独立同分布,均值为0,方差为1。 α 0 > 0 , α i ≥ 0 , β j ≥ 0 , i > 0 , ∑ i = 1 max ⁡ ( m , s ) ( α i + β i ) < 1 \alpha_0>0,\alpha_i\geq0,\beta_j\geq0,i>0,\sum_{i=1}^{\max(m,s)}(\alpha_i+\beta_i)<1 α0>0,αi0,βj0,i>0,i=1max(m,s)(αi+βi)<1

{ a t } \{a_t\} {at} 的性质

误差 { a t } \{a_t\} {at} 是不相关的、平稳的,均值为0,条件方差有限。
E ( a t ∣ F t − 1 ) = 0 , E ( a t ) = 0 , E ( a t a t − j ) = 0 , j ≥ 1 V a r ( a t ) = E ( a t 2 ) = α 0 1 − ( ∑ i = 1 m α i ) − ( ∑ j = 1 s β j ) ∑ i = 1 max ⁡ ( m , s ) ( α i + β i ) < 1 E(a_t|F_{t-1})=0,E(a_t)=0,E(a_ta_{t-j})=0,j\geq1\\Var(a_t)=E(a_t^2)=\frac{\alpha_0}{1-(\sum_{i=1}^m\alpha_i)-(\sum_{j=1}^s\beta_j)}\\\sum_{i=1}^{\max(m,s)}(\alpha_i+\beta_i)<1 E(atFt1)=0,E(at)=0,E(atatj)=0,j1Var(at)=E(at2)=1(i=1mαi)(j=1sβj)α0i=1max(m,s)(αi+βi)<1
条件异方差误差:
V a r ( a t ∣ F t − 1 ) = E ( a t 2 ∣ F t − 1 ) = σ t 2 E ( ε t 2 ∣ F t − 1 ) = σ t 2 Var(a_t|F_{t-1})=E(a_t^2|F_{t-1})=\sigma_t^2E(\varepsilon_t^2|F_{t-1})=\sigma_t^2 Var(atFt1)=E(at2Ft1)=σt2E(εt2Ft1)=σt2
重新参数化:令 η t = a t 2 − σ t 2 \eta_t=a_t^2-\sigma_t^2 ηt=at2σt2 { η t } \{\eta_t\} {ηt} 是不相关的序列,GARCH模型变成:
a t 2 = α 0 + ∑ i = 1 max ⁡ ( m , s ) ( α i + β i ) a t − i 2 + η t − ∑ j = 1 s β j η t − j a_t^2=\alpha_0+\sum_{i=1}^{\max(m,s)}(\alpha_i+\beta_i)a_{t-i}^2+\eta_t-\sum_{j=1}^s\beta_j\eta_{t-j} at2=α0+i=1max(m,s)(αi+βi)ati2+ηtj=1sβjηtj
这是 { a t 2 } \{a_t^2\} {at2} 序列的ARMA形式。

GARCH(1,1)模型

σ t 2 = α 0 + α 1 a t − 1 2 + β 1 σ t − 1 2 \sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2+\beta_1\sigma_{t-1}^2 σt2=α0+α1at12+β1σt12

弱稳定性: 0 ≤ α 1 , β 1 < 1 , ( α 1 + β 1 ) < 1 0\leq\alpha_1,\beta_1<1,(\alpha_1+\beta_1)<1 0α1,β1<1,(α1+β1)<1

非条件方差: σ ˉ 2 = α 0 1 − α 1 − β 1 \bar\sigma^2=\dfrac{\alpha_0}{1-\alpha_1-\beta_1} σˉ2=1α1β1α0

波动性聚类

如果 1 − 2 α 1 2 − ( α 1 + β 1 ) 2 > 0 1-2\alpha_1^2-(\alpha_1+\beta_1)^2>0 12α12(α1+β1)2>0,则:
E ( a t 4 ) [ E ( a t 2 ) ] 2 = 3 [ 1 − ( α 1 + β 1 ) 2 ] 1 − ( α 1 + β 1 ) 2 − 2 α 1 2 > 3 → 厚 尾 \frac{E(a_t^4)}{[E(a_t^2)]^2}=\frac{3[1-(\alpha_1+\beta_1)^2]}{1-(\alpha_1+\beta_1)^2-2\alpha_1^2}>3\to 厚尾 [E(at2)]2E(at4)=1(α1+β1)22α123[1(α1+β1)2]>3

GARCH(1,1)模型的预测

一步预测
σ h + 1 2 = α 0 + α 1 a h 2 + β 1 σ h 2 σ h 2 ( 1 ) = E [ σ h + 1 2 ∣ F h ] = α 0 + α 1 a h 2 + β 1 σ h 2 \sigma_{h+1}^2=\alpha_0+\alpha_1a_h^2+\beta_1\sigma_h^2\\\sigma_h^2(1)=E[\sigma_{h+1}^2|F_h]=\alpha_0+\alpha_1a_h^2+\beta_1\sigma_h^2 σh+12=α0+α1ah2+β1σh2σh2(1)=E[σh+12Fh]=α0+α1ah2+β1σh2
两步预测
σ h + 2 2 = α 0 + α 1 a h + 1 2 + β 1 σ h + 1 2 σ h 2 ( 2 ) = E [ σ h + 2 2 ∣ F h ] = α 0 + α 1 E [ a h + 1 2 ∣ F h ] + β 1 σ h + 1 2 = α 0 + ( α 1 + β 1 ) σ h 2 ( 1 ) \sigma_{h+2}^2=\alpha_0+\alpha_1a_{h+1}^2+\beta_1\sigma_{h+1}^2\\\sigma_h^2(2)=E[\sigma_{h+2}^2|F_h]=\alpha_0+\alpha_1E[a_{h+1}^2|F_h]+\beta_1\sigma_{h+1}^2\\=\alpha_0+(\alpha_1+\beta_1)\sigma_h^2(1) σh+22=α0+α1ah+12+β1σh+12σh2(2)=E[σh+22Fh]=α0+α1E[ah+12Fh]+β1σh+12=α0+(α1+β1)σh2(1)
l步预测
σ h 2 ( l ) = α 0 + ( α 1 + β 1 ) σ h 2 ( l − 1 ) , l > 1 \sigma_h^2(l)=\alpha_0+(\alpha_1+\beta_1)\sigma_h^2(l-1),l>1 σh2(l)=α0+(α1+β1)σh2(l1),l>1

GARCH模型的区间预测

一步预测:
V a r ( r h + 1 ∣ F h ) = σ h 2 ( 1 ) = σ h + 1 Var(r_{h+1}|F_h)=\sigma_h^2(1)=\sigma_{h+1} Var(rh+1Fh)=σh2(1)=σh+1
一步预测95%的置信区间为:
[ E ( r h + 1 ∣ F h ) − 1.96 σ h ( 1 ) , E ( r h + 1 ∣ F h ) + 1.96 σ h ( 1 ) ] [E(r_{h+1}|F_h)-1.96\sigma_h(1),E(r_{h+1}|F_h)+1.96\sigma_h(1)] [E(rh+1Fh)1.96σh(1),E(rh+1Fh)+1.96σh(1)]
考虑一个AR(1)-GARCH(1,1)模型:
r t = ϕ 0 + ϕ 1 r t − 1 + a t , a t = σ t ε t , ε t ∼ i . i . d . N ( 0 , 1 ) σ t 2 = α 0 + α 1 a t − 1 2 + β 1 σ t − 1 2 r_t=\phi_0+\phi_1r_{t-1}+a_t,a_t=\sigma_t\varepsilon_t,\varepsilon_t\sim i.i.d.N(0,1)\\\sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2+\beta_1\sigma_{t-1}^2 rt=ϕ0+ϕ1rt1+at,at=σtεt,εti.i.d.N(0,1)σt2=α0+α1at12+β1σt12
一步预测95%的置信区间为:
[ ϕ 0 + ϕ 1 r h − 1.96 α 0 + α 1 a h 2 + β 1 σ h 2 , ϕ 0 + ϕ 1 r h + 1.96 α 0 + α 1 a h 2 + β 1 σ h 2 ] [\phi_0+\phi_1r_h-1.96\sqrt{\alpha_0+\alpha_1a_h^2+\beta_1\sigma_h^2},\phi_0+\phi_1r_h+1.96\sqrt{\alpha_0+\alpha_1a_h^2+\beta_1\sigma_h^2}] [ϕ0+ϕ1rh1.96α0+α1ah2+β1σh2 ,ϕ0+ϕ1rh+1.96α0+α1ah2+β1σh2 ]
两步预测:
r h + 2 = ϕ 0 ( 1 + ϕ 1 ) + ϕ 1 2 r h + ϕ 1 a h + 1 + a h + 2 r h ( 2 ) = E ( r h + 2 ∣ F h ) = ϕ 0 ( 1 + ϕ 1 ) + ϕ 1 2 r h V a r ( r h + 2 ∣ F h ) = V a r ( ϕ 1 a h + 1 + a h + 2 ∣ F h ) = ϕ 1 2 V a r ( a h + 1 ∣ F h ) + V a r ( a h + 2 ∣ F h ) = ϕ 1 2 σ h 2 ( 1 ) + σ h 2 ( 2 ) = ϕ 1 2 σ h 2 ( 1 ) + α 0 + ( α 1 + β 1 ) σ h 2 ( 1 ) r_{h+2}=\phi_0(1+\phi_1)+\phi_1^2r_h+\phi_1a_{h+1}+a_{h+2}\\r_h(2)=E(r_{h+2}|F_h)=\phi_0(1+\phi_1)+\phi_1^2r_h\\Var(r_{h+2}|F_h)=Var(\phi_1a_{h+1}+a_{h+2}|F_h)\\=\phi_1^2Var(a_{h+1}|F_h)+Var(a_{h+2}|F_h)\\=\phi_1^2\sigma_h^2(1)+\sigma_h^2(2)\\=\phi_1^2\sigma_h^2(1)+\alpha_0+(\alpha_1+\beta_1)\sigma_h^2(1) rh+2=ϕ0(1+ϕ1)+ϕ12rh+ϕ1ah+1+ah+2rh(2)=E(rh+2Fh)=ϕ0(1+ϕ1)+ϕ12rhVar(rh+2Fh)=Var(ϕ1ah+1+ah+2Fh)=ϕ12Var(ah+1Fh)+Var(ah+2Fh)=ϕ12σh2(1)+σh2(2)=ϕ12σh2(1)+α0+(α1+β1)σh2(1)
两步预测95%的置信区间为:
[ ϕ 0 ( 1 + ϕ 1 ) + ϕ 1 2 r h − 1.96 α 0 + ( α 1 + β 1 + ϕ 1 2 ) σ h 2 ( 1 ) , ϕ 0 ( 1 + ϕ 1 ) + ϕ 1 2 r h + 1.96 α 0 + ( α 1 + β 1 + ϕ 1 2 ) σ h 2 ( 1 ) ] [\phi_0(1+\phi_1)+\phi_1^2r_h-1.96\sqrt{\alpha_0+(\alpha_1+\beta_1+\phi_1^2)\sigma_h^2(1)},\phi_0(1+\phi_1)+\phi_1^2r_h+1.96\sqrt{\alpha_0+(\alpha_1+\beta_1+\phi_1^2)\sigma_h^2(1)}] [ϕ0(1+ϕ1)+ϕ12rh1.96α0+(α1+β1+ϕ12)σh2(1) ,ϕ0(1+ϕ1)+ϕ12rh+1.96α0+(α1+β1+ϕ12)σh2(1) ]

例子:标准普尔500指数从1926年开始的每月超额回报有792个观察值:

  1. 均值方程:AR(3)
  2. 检验ARCH效应
  3. 联合估计AR(3)-GARCH(1,1)
  4. 所有的AR系数都在统计上不显著
  5. 简化模型:AR(0)-GARCH(1,1)
  6. 模型检验:对 { a ~ t } , { a ~ t 2 } \{\tilde a_t\},\{\tilde a_t^2\} {a~t},{a~t2} 做Q检验
  7. 估计自由度
  8. 预测

IGARCH模型

波动率常常表现出非平稳性: α 1 + β 1 = 1 \alpha_1+\beta_1=1 α1+β1=1。一个IGARCH(1,1)模型如下:
a t = σ t ε t , σ t 2 = α 0 + β 1 σ t − 1 2 + ( 1 − β 1 ) a t − 1 2 a_t=\sigma_t\varepsilon_t,\sigma_t^2=\alpha_0+\beta_1\sigma_{t-1}^2+(1-\beta_1)a_{t-1}^2 at=σtεt,σt2=α0+β1σt12+(1β1)at12

比如对于标准普尔500指数的每月超额回报,一个估计的IGARCH(1,1)模型为:
r t = 0.007 + a t , σ t 2 = 0.0001 + 0.806 σ t − 1 2 + 0.194 a t − 1 2 r_t=0.007+a_t,\sigma_t^2=0.0001+0.806\sigma_{t-1}^2+0.194a_{t-1}^2 rt=0.007+at,σt2=0.0001+0.806σt12+0.194at12

对于一个IGARCH(1,1)模型:
σ h 2 ( l ) = σ h 2 ( 1 ) + ( l − 1 ) α 0 , l ≥ 1 \sigma_h^2(l)=\sigma_h^2(1)+(l-1)\alpha_0,l\geq1 σh2(l)=σh2(1)+(l1)α0,l1
σ h 2 ( 1 ) \sigma_h^2(1) σh2(1) 对未来波动率的影响是持久的,波动率的预测形成了一条斜率 = α 0 =\alpha_0 =α0 的直线。

特殊情况: α 0 = 0 \alpha_0=0 α0=0

如果 E [ log ⁡ ( α 1 ε t 2 + β 1 ) ] < ∞ E[\log(\alpha_1\varepsilon_t^2+\beta_1)]<\infin E[log(α1εt2+β1)]<,则模型是严平稳的。

GARCH-in-Mean

条件均值规范:
r t = A R M A ( p , q ) + β ′ X t r_t=ARMA(p,q)+\beta'X_t rt=ARMA(p,q)+βXt
X t X_t Xt 是一个解释性变量,可以是虚拟变量、市场收益、波动率。

外源解释变量也可以添加到条件方差公式中:
σ t 2 = G A R C H ( p . q ) + δ ′ Z t \sigma_t^2=GARCH(p.q)+\delta'Z_t σt2=GARCH(p.q)+δZt
Z t Z_t Zt 是一个解释变量。

金融理论认为波动性可能与资产风险溢价有关。GARCH-M模型允许时变性波动性与预期回报相关。
r t = μ + c g ( σ t ) + a t , a t = σ t ε t σ t 2 = α 0 + α 1 a t − 1 2 + β 1 σ t − 1 2 g ( σ t ) = { σ t σ t 2 log ⁡ ( σ t 2 ) r_t=\mu+cg(\sigma_t)+a_t,a_t=\sigma_t\varepsilon_t\\\sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2+\beta_1\sigma_{t-1}^2\\g(\sigma_t)=\begin{cases}\sigma_t\\\sigma_t^2\\\log(\sigma_t^2)\end{cases} rt=μ+cg(σt)+at,at=σtεtσt2=α0+α1at12+β1σt12g(σt)=σtσt2log(σt2)
c c c 是风险溢价。

EGARCH模型

杠杆效应

EGARCH(m,s)模型的形式:
a t = σ t ε t , log ⁡ ( σ t 2 ) = α 0 + ∑ i = 1 s α i ∣ a t − i ∣ + γ i a t − i σ t − i + ∑ j = 1 m β j log ⁡ ( σ t − j 2 ) a_t=\sigma_t\varepsilon_t,\log(\sigma_t^2)=\alpha_0+\sum_{i=1}^s\alpha_i\frac{|a_{t-i}|+\gamma_ia_{t-i}}{\sigma_{t-i}}+\sum_{j=1}^m\beta_j\log(\sigma_{t-j}^2) at=σtεt,log(σt2)=α0+i=1sαiσtiati+γiati+j=1mβjlog(σtj2)
γ i \gamma_i γi 表示 a t − i a_{t-i} ati 的杠杆效应。实际应用中期望 γ i \gamma_i γi 为负数。

TGARCH/GJR模型

TGARCH(s,m),或者GJR(s,m)模型定义为:
r t = μ t + a t , a t = σ t ε t σ t 2 = α 0 + ∑ i = 1 s ( α i + γ i N t − i ) a t − i 2 + ∑ j = 1 m β j σ t − j 2 N t − i = { 1    i f   a t − i < 0 0    i f   a t − i ≥ 0 r_t=\mu_t+a_t,a_t=\sigma_t\varepsilon_t\\\sigma_t^2=\alpha_0+\sum_{i=1}^s(\alpha_i+\gamma_iN_{t-i})a_{t-i}^2+\sum_{j=1}^m\beta_j\sigma_{t-j}^2\\N_{t-i}=\begin{cases}1\ \ if\ a_{t-i}<0\\0\ \ if\ a_{t-i}\geq0\end{cases} rt=μt+at,at=σtεtσt2=α0+i=1s(αi+γiNti)ati2+j=1mβjσtj2Nti={1  if ati<00  if ati0
上面用0作为阈值。

a t − i a_{t-i} ati 为正,总效应为 α i a t − i 2 \alpha_ia_{t-i}^2 αiati2

a t − i a_{t-i} ati 为负,总效应为 ( α i + γ i ) a t − i 2 (\alpha_i+\gamma_i)a_{t-i}^2 (αi+γi)ati2

APARCH模型

r t = μ t + a t , a t = σ t ε t , ε ∼ D ( 0 , 1 ) σ t δ = α 0 + ∑ i = 1 s α i ( ∣ a t − i ∣ − γ i a t − i ) δ + ∑ j = 1 m β j σ t − j δ r_t=\mu_t+a_t,a_t=\sigma_t\varepsilon_t,\varepsilon\sim D(0,1)\\\sigma_t^{\delta}=\alpha_0+\sum_{i=1}^s\alpha_i(|a_{t-i}|-\gamma_ia_{t-i})^{\delta}+\sum_{j=1}^m\beta_j\sigma_{t-j}^{\delta} rt=μt+at,at=σtεt,εD(0,1)σtδ=α0+i=1sαi(atiγiati)δ+j=1mβjσtjδ

其中 δ \delta δ 是非负的实数。杠杆效应表明 γ i > 0 \gamma_i>0 γi>0

使用高频数据

r t m r_t^m rtm 为 第 t t t 个月的对数收益, { r t , i } i = 1 n \{r_{t,i}\}^n_{i=1} {rt,i}i=1n 是第 t t t 个月内的日度对数收益。根据对数收益的性质,有:
r t m = ∑ i = 1 n r t , i r_t^m=\sum_{i=1}^nr_{t,i} rtm=i=1nrt,i
假设条件方差和方差存在,我们有:
V a r ( r t m ∣ F t − 1 ) = ∑ i = 1 n V a r ( r t , i ∣ F t − 1 ) + 2 ∑ i < j C o v [ ( r t , i , r t , j ) ∣ F t − 1 ] Var(r_t^m|F_{t-1})=\sum_{i=1}^nVar(r_{t,i}|F_{t-1})+2\sum_{i<j}Cov[(r_{t,i},r_{t,j})|F_{t-1}] Var(rtmFt1)=i=1nVar(rt,iFt1)+2i<jCov[(rt,i,rt,j)Ft1]

  1. 如果 { r t , i } \{r_{t,i}\} {rt,i} 是白噪声序列:
    V a r ( r t m ∣ F t − 1 ) = n V a r ( r t , 1 ) Var(r_t^m|F_{t-1})=nVar(r_{t,1}) Var(rtmFt1)=nVar(rt,1)
    V a r ( r t , 1 ) Var(r_{t,1}) Var(rt,1) 可以从日度收益 { r t , i } i = 1 n \{r_{t,i}\}^n_{i=1} {rt,i}i=1n 估计:
    σ ^ 2 = ∑ i = 1 n ( r t , i − r ˉ t ) 2 n − 1 , r ˉ t = ∑ i = 1 n r t , i n \hat\sigma^2=\frac{\sum_{i=1}^n(r_{t,i}-\bar r_t)^2}{n-1},\bar r_t=\frac{\sum_{i=1}^nr_{t,i}}{n} σ^2=n1i=1n(rt,irˉt)2,rˉt=ni=1nrt,i
    估计的月度波动率为:
    σ ^ m 2 = n n − 1 ∑ i = 1 n ( r t , i − r ˉ t ) 2 ≈ ∑ i = 1 n ( r t , i − r ˉ t ) 2 \hat\sigma_m^2=\frac{n}{n-1}\sum_{i=1}^n(r_{t,i}-\bar r_t)^2\approx\sum_{i=1}^n(r_{t,i}-\bar r_t)^2 σ^m2=n1ni=1n(rt,irˉt)2i=1n(rt,irˉt)2

  2. 如果 { r t , i } \{r_{t,i}\} {rt,i} 是MA(1)模型,则:
    V a r ( r t m ∣ F t − 1 ) = n V a r ( r t , 1 ) + 2 ( n − 1 ) C o v ( r t , 1 , t t , 2 ) Var(r_t^m|F_{t-1})=nVar(r_{t,1})+2(n-1)Cov(r_{t,1},t_{t,2}) Var(rtmFt1)=nVar(rt,1)+2(n1)Cov(rt,1,tt,2)
    可以被估计为:
    σ ^ m 2 = n n − 1 ∑ i = 1 n ( r t , i − r ˉ t ) 2 + 2 ∑ i = 1 n − 1 ( r t , i − r ˉ t ) ( r t , i + 1 − r ˉ t ) \hat\sigma_m^2=\frac{n}{n-1}\sum_{i=1}^n(r_{t,i}-\bar r_t)^2+2\sum_{i=1}^{n-1}(r_{t,i}-\bar r_t)(r_{t,i+1}-\bar r_t) σ^m2=n1ni=1n(rt,irˉt)2+2i=1n1(rt,irˉt)(rt,i+1rˉt)

如果样本均值 r ˉ t \bar r_t rˉt 为0,则 σ ^ m 2 ≈ ∑ i = 1 n r t , i 2 \hat\sigma_m^2\approx\sum_{i=1}^nr_{t,i}^2 σ^m2i=1nrt,i2

r t r_t rt 为资产的每日对数收益, r t = ∑ i = 1 n r t , i r_t=\sum_{i=1}^nr_{t,i} rt=i=1nrt,i
R V t = ∑ i = 1 n r t , i 2 RV_t=\sum_{i=1}^nr_{t,i}^2 RVt=i=1nrt,i2
被称为 r t r_t rt 的已实现波动率。

GARCH-MIDAS模型

波动性的短期和长期组成部分是分开的。MIDAS(混合数据抽样)方法用于将宏观经济变量与波动性的长期组成部分联系起来。
r i , t = E ( r i , t ∣ F i − 1 , t ) + a i , t , a i , t = τ t × g i , t ε i , t r_{i,t}=E(r_{i,t}|F_{i-1,t})+a_{i,t},a_{i,t}=\sqrt{\tau_t\times g_{i,t}}\varepsilon_{i,t} ri,t=E(ri,tFi1,t)+ai,t,ai,t=τt×gi,t εi,t
其中 r i , t r_{i,t} ri,t 是第 t t t 个月的第 i i i 天的对数收益。 { ε i , t } \{\varepsilon_{i,t}\} {εi,t} i.i.d 的标准正态变量。

短期波动性成分:

一个均值回转单位日度GARCH(1,1)过程:
g i , t = ( 1 − α − β ) + α a i , t 2 τ t + β g i − 1 , t g_{i,t}=(1-\alpha-\beta)+\alpha\frac{a_{i,t}^2}{\tau_t}+\beta g_{i-1,t} gi,t=(1αβ)+ατtai,t2+βgi1,t
一个均值回转单位GJR(1,1)过程:
g i , t = ( 1 − α − β − γ 2 ) + ( α + γ × I ( a i , t < 0 ) ) a i , t 2 τ t + β g i − 1 , t g_{i,t}=(1-\alpha-\beta-\frac{\gamma}{2})+(\alpha+\gamma\times I_{(a_{i,t}<0)})\frac{a_{i,t}^2}{\tau_t}+\beta g_{i-1,t} gi,t=(1αβ2γ)+(α+γ×I(ai,t<0))τtai,t2+βgi1,t
长期波动率成分:
τ t = m + θ ∑ k = 1 K ϕ k ( w 1 , w 2 ) R V t − k , R V t = ∑ i = 1 N t r i , t 2 ϕ k ( w ) = { ( k / K ) w 1 − 1 − ( 1 − k / K ) w 2 − 1 ∑ j = 1 K ( j / K ) w 1 − 1 − ( 1 − j / K ) w 2 − 1 w k ∑ j = 1 K w j \tau_t=m+\theta\sum_{k=1}^K\phi_k(w_1,w_2)RV_{t-k},RV_t=\sum_{i=1}^{N_t}r_{i,t}^2\\\phi_k(w)=\begin{cases}\frac{(k/K)^{w_1-1}-(1-k/K)^{w_2-1}}{\sum_{j=1}^K(j/K)^{w_1-1}-(1-j/K)^{w_2-1}}\\\frac{w^k}{\sum_{j=1}^Kw^j}\end{cases} τt=m+θk=1Kϕk(w1,w2)RVtk,RVt=i=1Ntri,t2ϕk(w)=j=1K(j/K)w11(1j/K)w21(k/K)w11(1k/K)w21j=1Kwjwk
滚动窗口RV:
R V i ( r w ) = ∑ i = 1 N ′ r i − j 2 RV_i^{(rw)}=\sum_{i=1}^{N'}r_{i-j}^2 RVi(rw)=i=1Nrij2
直接纳入宏观经济因素:
log ⁡ τ t = m l + θ l ∑ k = 1 K l ϕ k ( w 1 , l , w 2 , l ) X l , t − k m v \log\tau_t=m_l+\theta_l\sum_{k=1}^{K_l}\phi_k(w_{1,l},w_{2,l})X_{l,t-k}^{mv} logτt=ml+θlk=1Klϕk(w1,l,w2,l)Xl,tkmv

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值