WGCNA那么多图,都啥意思? 官网

本文介绍WGCNA工作流程,包括确定最优软阈值、构建共表达网络、基因聚类及模块识别等步骤,并解析模块与性状关联分析、关键模块核心基因筛选等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

WGCNA使用非常广泛,网上流传的示例代码也非常多,但还是推荐大家直接参考官方代码,最全面且权威:https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/index.html

今天不讲代码,只讲讲这些图怎么看,能表达什么意义。

图解|WGCNA那么多图,都啥意思? - 知乎

WGCNA文章[1]给出了工作流程图,主要包括:构建共表达网络→模块识别→模块与性状关联→模块相关性→关键模块中识别核心基因

在构建共表达网络之前,还有一步比较关键的步骤——寻找最优软阈值(soft thresholding或power),使构建的网络更符合无标度拓扑结构。这时,我们会看到如下图:

确定最优软阈值主要参考左图,即在不同软阈值(x轴)情况下的无标度拟合指数(scale-free fit index,y轴)。其中红线表示主观选择的无标度拟合指数取值,如图为0.9,一般我们选择0.8~0.95之间较为稳妥。从左图看,当无标度拟合指数在0.9时,符合构建无标度网络的最小软阈值为6,因此可以选择6作为最优软阈值用于后续分析。右图为不同软阈值情况下的网络连通度。

基于最优软阈值构建共表达网络,将基因划分到不同模块后,可以绘制基因聚类树:

这个图可以分为两部分看:上半部分是基因的层次聚类树状图,下半部分是基因模块,也就是网络模块。上下对应,可以看到距离较近的基因(聚类到同一条分支)被划分到了同一模块。

接着,计算模块与感兴趣的临床特征之间的相关性与显著性,绘制相关性热图:

上图中,最左侧的颜色块代表模块,最右侧的颜色条代表相关性范围。中间部分的热图中,颜色越深相关性越高,红色表示正相关,绿色表示负相关;每个单元格中的数字表示相关性和显著性。如上图,brown模块与weight性状表现为正相关且相关性最高。此时,我们可以选择相关性最高的brown模块作为关键模块。一般,我们会按相关性的绝对值筛选最相关模块,即负相关模块也应该考虑在内。需要注意的是,grey模块中包含了所有未参与聚类的基因,因此是无效模块,不应用于后续分析。

基于拓扑重叠矩阵,可以绘制基因之间的相关性热图。其中颜色越深,说明基因之间的相互作用越强。由于对角线表示模块内部基因之间的相互作用,所以自然是对角线上的颜色最深:

也可以看看模块之间的聚类树和相关性热图,探索模块之间的互作关系:

可以将感兴趣的性状,如weight也加入到图中。如上图,可以发现red、brown、blue模块之间有很强的相关性,甚至比他们与weight之间的相关性更强。

之后针对关键模块brown和感兴趣的性状weight进一步挖掘,看看基因与模块的相关性(Module Membership, MM)和基因与性状的相关性(Gene Significance, GS)之间是否有某种关联。 `

通过以上散点图,可以发现MM和GS呈正相关,说明这些与性状高度相关的基因,在关键模块中也扮演着举足轻重的角色。

我们也可以基于关键模块中基因之间的相似性,构建关键模块网络,以Cytoscape或VisANT软件可视化展示网络中基因之间的互作关系:

最后,也是最重要的——基于关键模块筛选核心基因。这一步的可用方法比较多,没有固定限制。比如,可以根据MM>0.8且GS>0.3筛选核心基因[2];可以根据关键模块的网络degree筛选top 30作为核心基因[3];也可以计算kME值,依据|kME|≥0.7筛选[4];或者将网络导入Cytoscape后,利用插件cytoHubba筛选[5]。

1. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. Published 2008 Dec 29. doi:10.1186/1471-2105-9-559

2. Song ZY, Chao F, Zhuo Z, Ma Z, Li W, Chen G. Identification of hub genes in prostate cancer using robust rank aggregation and weighted gene co-expression network analysis. Aging (Albany NY). 2019;11(13):4736-4756. doi:10.18632/aging.102087

3. Zhang X, Feng H, Li Z, et al. Application of weighted gene co-expression network analysis to identify key modules and hub genes in oral squamous cell carcinoma tumorigenesis. Onco Targets Ther. 2018;11:6001-6021. Published 2018 Sep 19. doi:10.2147/OTT.S171791

4. Panahi B, Hejazi MA. Weighted gene co-expression network analysis of the salt-responsive transcriptomes reveals novel hub genes in green halophytic microalgae Dunaliella salina. Sci Rep. 2021;11(1):1607. Published 2021 Jan 15. doi:10.1038/s41598-020-80945-3

5. Li CY, Cai JH, Tsai JJP, Wang CCN. Identification of Hub Genes Associated With Development of Head and Neck Squamous Cell Carcinoma by Integrated Bioinformatics Analysis. Front Oncol. 2020;10:681. Published 2020 May 22. doi:10.3389/fonc.2020.00681

### WGCNA聚类树的生成方法及其解读 #### 方法概述 WGCNA(Weighted Gene Coexpression Network Analysis)是一种用于识别基因模块和研究基因共表达网络的强大工具。其核心之一是对基因进行分层聚类分析,从而构建聚类树来展示基因之间的关系。以下是实现这一过程的关键步骤: 1. **数据预处理** 需要准备标准化后的转录组数据矩阵,其中每一列代表一个样本,每一行表示一个基因的表达水平。如果存在缺失值,则可以使用`impute`包填补这些缺失值[^3]。 2. **计算相似度矩阵** 使用软阈值幂法(soft-thresholding power method),基于皮尔逊相关系数或其他距离指标创建加权邻接矩阵。这一步骤通过调整β参数优化尺度自由分布特性,使得最终得到的网络接近无标度性质[^1]。 3. **转换成拓扑重叠矩阵 (TOM)** TOM衡量两个节点间共享邻居的程度,在此基础上进一步转化为溶解性距离(dissimilarity measure),以便后续执行层次聚类算法。 4. **应用层次聚类技术** 基于上述的距离测量标准运用hierarchical clustering function (`hclust`) 或者 `flashClust` 函数完成实际的聚类操作。此阶段会形成一棵反映各成员之间亲疏远近程度的树形结构即所谓的“聚类树”。 5. **切割树以定义模块** 利用动态剪枝策略或者固定高度切片的方式把整棵树分割成为若干独立子集——也就是我们所说的“模块”。每个分支对应着一组具有较高内部连通性的基因集合。 6. **可视化结果** 绘制热配合颜色条带标注各个样品所属类别;同时也可以单独呈现所获得的聚类形,便于直观理解整体架构布局情况[^4]。 #### 解读要点 当观察到某个特定区域内的个基因紧密相连时,意味着它们可能共同参与某些生物学功能或处于相同调控机制之下。此外,还可以结合临床表型信息探索潜在关联模式,比如寻找与疾病状态显著相关的特异性模块等[^2]。 ```R # 示例代码片段演示如何生成并保存一张PDF格式的聚类像文件 pdf("cluster_tree.pdf") plotDendroAndColors(dendro = dendrogram, colors = moduleColors, groupLabels = paste0("Module ", unique(moduleColors)), main="Gene Clustering Dendrogram with Module Assignments") dev.off() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值