xx@xx-OMEN-by-HP-Laptop:~/catkin_ws$ catkin_make
Base path: /home/xx/catkin_ws
Source space: /home/xx/catkin_ws/src
Build space: /home/xx/catkin_ws/build
Devel space: /home/xx/catkin_ws/devel
Install space: /home/xx/catkin_ws/install
Running command: “make cmake_check_build_system” in “/home/xx/catkin_ws/build”
Running command: “make -j4 -l4” in “/home/xx/catkin_ws/build”
[ 0%] Built target std_msgs_generate_messages_py
[ 0%] Built target _turtlebot3_msgs_generate_messages_check_deps_Sound
[ 0%] Built target _turtlebot3_msgs_generate_messages_check_deps_SensorState
[ 0%] Built target _turtlebot3_msgs_generate_messages_check_deps_VersionInfo
[ 0%] Built target std_msgs_generate_messages_cpp
[ 0%] Built target std_msgs_generate_messages_eus
[ 0%] Built target std_msgs_generate_messages_lisp
[ 0%] Built target std_msgs_generate_messages_nodejs
[ 0%] Built target diagnostic_msgs_generate_messages_lisp
[ 0%] Built target geometry_msgs_generate_messages_py
[ 0%] Built target geometry_msgs_generate_messages_nodejs
[ 0%] Built target sensor_msgs_generate_messages_eus
[ 0%] Built target sensor_msgs_generate_messages_lisp
[ 0%] Built target sensor_msgs_generate_messages_cpp
[ 0%] Built target roscpp_generate_messages_lisp
[ 0%] Built target roscpp_generate_messages_nodejs
[ 0%] Built target rosgraph_msgs_generate_messages_lisp
[ 0%] Built target rosgraph_msgs_generate_messages_py
[ 0%] Built target geometry_msgs_generate_messages_cpp
[ 0%] Built target geometry_msgs_generate_messages_eus
[ 0%] Built target sensor_msgs_generate_messages_nodejs
[ 0%] Built target geometry_msgs_generate_messages_lisp
[ 0%] Built target rosgraph_msgs_generate_messages_nodejs
[ 0%] Built target roscpp_generate_messages_cpp
[ 0%] Built target rosgraph_msgs_generate_messages_eus
[ 0%] Built target roscpp_generate_messages_py
[ 0%] Built target sensor_msgs_generate_messages_py
[ 0%] Built target roscpp_generate_messages_eus
[ 0%] Built target rosgraph_msgs_generate_messages_cpp
[ 0%] Built target diagnostic_msgs_generate_messages_eus
[ 1%] Built target diagnostic_msgs_generate_messages_nodejs
[ 26%] Built target tracking_slam_lib
[ 26%] Built target diagnostic_msgs_generate_messages_cpp
[ 26%] Built target diagnostic_msgs_generate_messages_py
[ 26%] Built target actionlib_msgs_generate_messages_cpp
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3ActionResult
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3Action
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3Feedback
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3Result
[ 26%] Built target actionlib_msgs_generate_messages_eus
[ 26%] Built target actionlib_msgs_generate_messages_nodejs
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3ActionGoal
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3Goal
[ 26%] Built target turtlebot3_example_generate_messages_check_deps_Turtlebot3ActionFeedback
[ 26%] Built target actionlib_msgs_generate_messages_lisp
[ 26%] Built target actionlib_msgs_generate_messages_py
[ 26%] Built target turtlebot3_description_xacro_generated_to_devel_space
[ 31%] Built target turtlebot3_msgs_generate_messages_py
[ 34%] Built target flat_world_imu_node
[ 37%] Built target turtlebot3_msgs_generate_messages_cpp
[ 42%] Built target turtlebot3_msgs_generate_messages_eus
[ 46%] Built target turtlebot3_msgs_generate_messages_lisp
[ 50%] Built target turtlebot3_msgs_generate_messages_nodejs
[ 58%] Built target turtlebot3_example_generate_messages_cpp
[ 67%] Built target turtlebot3_example_generate_messages_nodejs
[ 76%] Built target turtlebot3_example_generate_messages_eus
[ 78%] Building CXX object tracking_slam/CMakeFiles/tracking_slam_node.dir/node/tracking_slam_node.cpp.o
[ 86%] Built target turtlebot3_example_generate_messages_lisp
[ 86%] Built target turtlebot3_msgs_generate_messages
[ 96%] Built target turtlebot3_example_generate_messages_py
[ 98%] Built target turtlebot3_diagnostics
[ 98%] Built target turtlebot3_example_generate_messages
/home/xx/catkin_ws/src/tracking_slam/node/tracking_slam_node.cpp:36:75: fatal error: /home/leo/catkin_ws/devel/include/turtlebot3_msgs/SensorState.h: 没有那个文件或目录
compilation terminated.
tracking_slam/CMakeFiles/tracking_slam_node.dir/build.make:62: recipe for target ‘tracking_slam/CMakeFiles/tracking_slam_node.dir/node/tracking_slam_node.cpp.o’ failed
make[2]: *** [tracking_slam/CMakeFiles/tracking_slam_node.dir/node/tracking_slam_node.cpp.o] Error 1
CMakeFiles/Makefile2:2764: recipe for target ‘tracking_slam/CMakeFiles/tracking_slam_node.dir/all’ failed
make[1]: *** [tracking_slam/CMakeFiles/tracking_slam_node.dir/all] Error 2
Makefile:138: recipe for target ‘all’ failed
make: *** [all] Error 2
Invoking “make -j4 -l4” failed
xx@xx-OMEN-by-HP-Laptop:~/catkin_ws$ catkin_make
Base path: /home/xx/catkin_ws
Source space: /home/xx/catkin_ws/src
Build space: /home/xx/catkin_ws/build
Devel space: /home/xx/catkin_ws/devel
Install space: /home/xx/catkin_ws/install
Running command: “make cmake_check_build_system” in “/home/xx/catkin_ws/build”
Running command: “make -j4 -l4” in “/home/xx/catkin_ws/build”
[ 0%] Built target std_msgs_generate_messages_py
[ 0%] Built target _turtlebot3_msgs_generate_messages_check_deps_SensorState
[ 0%] Built target _turtlebot3_msgs_generate_messages_check_deps_Sound
[ 0%] Built target std_msgs_generate_messages_cpp
[ 0%] Built target _turtlebot3_msgs_generate_messages_check_deps_VersionInfo
[ 0%] Built target std_msgs_generate_messages_eus
[ 0%] Built target std_msgs_generate_messages_lisp
[ 0%] Built target std_msgs_generate_messages_nodejs
[ 0%] Built target diagnostic_msgs_generate_messages_lisp
[ 0%] Built target geometry_msgs_generate_messages_py
[ 0%] Built target geometry_msgs_generate_messages_nodejs
[ 0%] Built target sensor_msgs_generate_messages_lisp
[ 0%] Built target sensor_msgs_generate_messages_eus
[ 0%] Built target sensor_msgs_generate_messages_cpp
[ 0%] Built target roscpp_generate_messages_lisp
[ 0%] Built target roscpp_generate_messages_nodejs
[ 0%] Built target rosgraph_msgs_generate_messages_lisp
[ 0%] Built target geometry_msgs_generate_messages_cpp
[ 0%] Built target rosgraph_msgs_generate_messages_py
[ 0%] Built target sensor_msgs_generate_messages_nodejs
[ 0%] Built target geometry_msgs_generate_messages_eus
[ 0%] Built target geometry_msgs_generate_messages_lisp
[ 0%] Built target rosgraph_msgs_generate_messages_nodejs
[ 0%] Built target roscpp_generate_messages_cpp
[ 0%] Built target rosgraph_msgs_generate_messages_eus
[ 0%] Built target roscpp_generate_messages_py
[ 0%] Built target rosgraph_msgs_generate_messages_cpp
[ 0%] Built target roscpp_generate_messages_eus
[ 0%] Built target sensor_msgs_generate_messages_py
[ 0%] Built target diagnostic_msgs_generate_messages_eus
[ 0%] Built target diagnostic_msgs_generate_messages_nodejs
[ 0%] Built target diagnostic_msgs_generate_messages_cpp
[ 0%] Built target diagnostic_msgs_generate_messages_py
[ 26%] Built target tracking_slam_lib
[ 26%] Built target actionlib_msgs_generate_messages_cpp
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3ActionResult
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3Result
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3Action
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3Feedback
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3Goal
[ 26%] Built target actionlib_msgs_generate_messages_eus
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3ActionGoal
[ 26%] Built target turtlebot3_example_generate_messages_check_deps_Turtlebot3ActionFeedback
[ 26%] Built target actionlib_msgs_generate_messages_nodejs
[ 26%] Built target actionlib_msgs_generate_messages_lisp
[ 26%] Built target actionlib_msgs_generate_messages_py
[ 26%] Built target turtlebot3_description_xacro_generated_to_devel_space
[ 29%] Built target flat_world_imu_node
[ 34%] Built target turtlebot3_msgs_generate_messages_py
[ 37%] Built target turtlebot3_msgs_generate_messages_cpp
[ 41%] Built target turtlebot3_msgs_generate_messages_nodejs
[ 46%] Built target turtlebot3_msgs_generate_messages_eus
[ 50%] Built target turtlebot3_msgs_generate_messages_lisp
[ 59%] Built target turtlebot3_example_generate_messages_eus
[ 68%] Built target turtlebot3_example_generate_messages_cpp
[ 76%] Built target turtlebot3_example_generate_messages_nodejs
[ 78%] Building CXX object tracking_slam/CMakeFiles/tracking_slam_node.dir/node/tracking_slam_node.cpp.o
[ 86%] Built target turtlebot3_example_generate_messages_lisp
[ 96%] Built target turtlebot3_example_generate_messages_py
[ 96%] Built target turtlebot3_msgs_generate_messages
[ 96%] Built target turtlebot3_example_generate_messages
[ 98%] Built target turtlebot3_diagnostics
/home/xx/catkin_ws/src/tracking_slam/node/tracking_slam_node.cpp:36:75: fatal error: /home/leo/catkin_ws/devel/include/turtlebot3_msgs/SensorState.h: 没有那个文件或目录
compilation terminated.
tracking_slam/CMakeFiles/tracking_slam_node.dir/build.make:62: recipe for target ‘tracking_slam/CMakeFiles/tracking_slam_node.dir/node/tracking_slam_node.cpp.o’ failed
make[2]: *** [tracking_slam/CMakeFiles/tracking_slam_node.dir/node/tracking_slam_node.cpp.o] Error 1
CMakeFiles/Makefile2:2764: recipe for target ‘tracking_slam/CMakeFiles/tracking_slam_node.dir/all’ failed
make[1]: *** [tracking_slam/CMakeFiles/tracking_slam_node.dir/all] Error 2
Makefile:138: recipe for target ‘all’ failed
make: *** [all] Error 2
Invoking “make -j4 -l4” failed
xx@xx-OMEN-by-HP-Laptop:~/catkin_ws$ catkin_make
Base path: /home/xx/catkin_ws
Source space: /home/xx/catkin_ws/src
Build space: /home/xx/catkin_ws/build
Devel space: /home/xx/catkin_ws/devel
Install space: /home/xx/catkin_ws/install
Running command: “make cmake_check_build_system” in “/home/xx/catkin_ws/build”
Running command: “make -j4 -l4” in “/home/xx/catkin_ws/build”
[ 0%] Built target std_msgs_generate_messages_py
[ 0%] Built target _turtlebot3_msgs_generate_messages_check_deps_SensorState
[ 0%] Built target _turtlebot3_msgs_generate_messages_check_deps_Sound
[ 0%] Built target _turtlebot3_msgs_generate_messages_check_deps_VersionInfo
[ 0%] Built target std_msgs_generate_messages_cpp
[ 0%] Built target std_msgs_generate_messages_eus
[ 0%] Built target std_msgs_generate_messages_nodejs
[ 0%] Built target std_msgs_generate_messages_lisp
[ 0%] Built target diagnostic_msgs_generate_messages_lisp
[ 0%] Built target geometry_msgs_generate_messages_py
[ 0%] Built target sensor_msgs_generate_messages_lisp
[ 0%] Built target sensor_msgs_generate_messages_eus
[ 0%] Built target geometry_msgs_generate_messages_nodejs
[ 0%] Built target sensor_msgs_generate_messages_cpp
[ 0%] Built target roscpp_generate_messages_lisp
[ 0%] Built target rosgraph_msgs_generate_messages_lisp
[ 0%] Built target roscpp_generate_messages_nodejs
[ 0%] Built target rosgraph_msgs_generate_messages_py
[ 0%] Built target geometry_msgs_generate_messages_cpp
[ 0%] Built target sensor_msgs_generate_messages_nodejs
[ 0%] Built target geometry_msgs_generate_messages_eus
[ 0%] Built target geometry_msgs_generate_messages_lisp
[ 0%] Built target rosgraph_msgs_generate_messages_nodejs
[ 0%] Built target roscpp_generate_messages_cpp
[ 0%] Built target rosgraph_msgs_generate_messages_eus
[ 0%] Built target roscpp_generate_messages_py
[ 0%] Built target roscpp_generate_messages_eus
[ 0%] Built target sensor_msgs_generate_messages_py
[ 0%] Built target rosgraph_msgs_generate_messages_cpp
[ 1%] Built target diagnostic_msgs_generate_messages_nodejs
[ 26%] Built target tracking_slam_lib
[ 26%] Built target diagnostic_msgs_generate_messages_cpp
[ 26%] Built target diagnostic_msgs_generate_messages_eus
[ 26%] Built target diagnostic_msgs_generate_messages_py
[ 26%] Built target actionlib_msgs_generate_messages_cpp
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3ActionResult
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3Result
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3Action
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3ActionGoal
[ 26%] Built target _turtlebot3_example_generate_messages_check_deps_Turtlebot3Feedback
[ 26%] Built target actionlib_msgs_generate_messages_eus
[ 26%] Built target turtlebot3_example_generate_messages_check_deps_Turtlebot3Goal
[ 26%] Built target actionlib_msgs_generate_messages_nodejs
[ 26%] Built target turtlebot3_example_generate_messages_check_deps_Turtlebot3ActionFeedback
[ 26%] Built target actionlib_msgs_generate_messages_lisp
[ 26%] Built target actionlib_msgs_generate_messages_py
[ 29%] Built target flat_world_imu_node
[ 29%] Built target turtlebot3_description_xacro_generated_to_devel_space
[ 39%] Built target turtlebot3_msgs_generate_messages_eus
[ 39%] Built target turtlebot3_msgs_generate_messages_py
[ 42%] Built target turtlebot3_msgs_generate_messages_cpp
[ 46%] Built target turtlebot3_msgs_generate_messages_nodejs
Scanning dependencies of target tracking_slam_node
[ 50%] Built target turtlebot3_msgs_generate_messages_lisp
[ 59%] Built target turtlebot3_example_generate_messages_eus
[ 68%] Built target turtlebot3_example_generate_messages_cpp
[ 76%] Built target turtlebot3_example_generate_messages_nodejs
[ 85%] Built target turtlebot3_example_generate_messages_lisp
[ 95%] Built target turtlebot3_example_generate_messages_py
[ 97%] Built target turtlebot3_diagnostics
[ 97%] Built target turtlebot3_msgs_generate_messages
[ 97%] Built target turtlebot3_example_generate_messages
[ 98%] Building CXX object tracking_slam/CMakeFiles/tracking_slam_node.dir/node/tracking_slam_node.cpp.o
In file included from /home/xx/catkin_ws/src/tracking_slam/include/tracking_slam/octomap_fusion.h:47:0,
from /home/xx/catkin_ws/src/tracking_slam/include/tracking_slam/sub_octomap_construction.h:35,
from /home/xx/catkin_ws/src/tracking_slam/include/tracking_slam/tracking_slam.h:45,
from /home/xx/catkin_ws/src/tracking_slam/node/tracking_slam_node.cpp:33:
/usr/include/pcl-1.7/pcl/visualization/cloud_viewer.h:202:14: warning: ‘template class std::auto_ptr’ is deprecated [-Wdeprecated-declarations]
std::auto_ptr<CloudViewer_impl> impl;
^
In file included from /usr/include/c++/5/bits/locale_conv.h:41:0,
from /usr/include/c++/5/locale:43,
from /usr/include/c++/5/iomanip:43,
from /usr/include/boost/math/policies/error_handling.hpp:12,
from /usr/include/boost/math/special_functions/round.hpp:14,
from /opt/ros/kinetic/include/ros/time.h:58,
from /opt/ros/kinetic/include/ros/ros.h:38,
from /home/xx/catkin_ws/src/tracking_slam/node/tracking_slam_node.cpp:27:
/usr/include/c++/5/bits/unique_ptr.h:49:28: note: declared here
template class auto_ptr;
^
[100%] Linking CXX executable /home/xx/catkin_ws/devel/lib/tracking_slam/tracking_slam_node
[100%] Built target tracking_slam_node
xx@xx-OMEN-by-HP-Laptop:~/catkin_ws$ source ~/catkin_ws/devel/setup.bash
xx@xx-OMEN-by-HP-Laptop:~/catkin_ws$ [tb3_test.launch] is neither a launch file in package [tracking_slam] nor is [tracking_slam] a launch file name
[tb3_test.launch]:未找到命令
xx@xx-OMEN-by-HP-Laptop:~/catkin_ws$ The traceback for the exception was written to the log file
未找到 ‘The’ 命令,您要输入的是否是:
命令 ‘the’ 来自于包 ‘the’ (universe)
The:未找到命令
xx@xx-OMEN-by-HP-Laptop:~/catkin_ws$ roslaunch tracking_slam tb3_test.launch
… logging to /home/xx/.ros/log/95764e80-1f7c-11ec-9da4-887873831b6b/roslaunch-xx-OMEN-by-HP-Laptop-8118.log
Checking log directory for disk usage. This may take awhile.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.
started roslaunch server http://xx-OMEN-by-HP-Laptop:38635/
SUMMARY
PARAMETERS
- /rosdistro: kinetic
- /rosversion: 1.12.17
- /tracking_slam_node/orbvoc_dir: /home/xx/catkin_w…
- /tracking_slam_node/pascal_caffemodel: /home/xx/catkin_w…
- /tracking_slam_node/pascal_png: /home/xx/catkin_w…
- /tracking_slam_node/prototxt_file: /home/xx/catkin_w…
- /tracking_slam_node/results_dir: /home/xx/catkin_w…
- /tracking_slam_node/tracking_slam_cfg_dir: /home/xx/catkin_w…
NODES
/
rviz (rviz/rviz)
tracking_slam_node (tracking_slam/tracking_slam_node)
auto-starting new master
process[master]: started with pid [8130]
ROS_MASTER_URI=http://localhost:11311
setting /run_id to 95764e80-1f7c-11ec-9da4-887873831b6b
process[rosout-1]: started with pid [8143]
started core service [/rosout]
process[tracking_slam_node-2]: started with pid [8146]
process[rviz-3]: started with pid [8147]
[ INFO] [1632738054.965521771]: rviz version 1.12.17
[ INFO] [1632738054.965579837]: compiled against Qt version 5.5.1
[ INFO] [1632738054.965595420]: compiled against OGRE version 1.9.0 (Ghadamon)
TRACKING-SLAM Started
WARNING: Logging before InitGoogleLogging() is written to STDERR
E0927 18:20:56.967550 8404 common.cpp:113] Cannot create Cublas handle. Cublas won’t be available.
I0927 18:20:57.192236 8404 upgrade_proto.cpp:67] Attempting to upgrade input file specified using deprecated input fields: /home/xx/catkin_ws/src/tracking_slam/config/segnet/segnet_pascal.prototxt
I0927 18:20:57.192384 8404 upgrade_proto.cpp:70] Successfully upgraded file specified using deprecated input fields.
W0927 18:20:57.192389 8404 upgrade_proto.cpp:72] Note that future Caffe releases will only support input layers and not input fields.
I0927 18:20:57.193328 8404 net.cpp:58] Initializing net from parameters:
name: “VGG_ILSVRC_16_layer”
state {
phase: TEST
level: 0
}
layer {
name: “input”
type: “Input”
top: “data”
input_param {
shape {
dim: 1
dim: 3
dim: 224
dim: 224
}
}
}
layer {
name: “conv1_1”
type: “Convolution”
bottom: “data”
top: “conv1_1”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv1_1_bn”
type: “BN”
bottom: “conv1_1”
top: “conv1_1”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu1_1”
type: “ReLU”
bottom: “conv1_1”
top: “conv1_1”
}
layer {
name: “conv1_2”
type: “Convolution”
bottom: “conv1_1”
top: “conv1_2”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv1_2_bn”
type: “BN”
bottom: “conv1_2”
top: “conv1_2”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu1_2”
type: “ReLU”
bottom: “conv1_2”
top: “conv1_2”
}
layer {
name: “pool1_drop”
type: “Dropout”
bottom: “conv1_2”
top: “conv1_2”
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: “pool1”
type: “Pooling”
bottom: “conv1_2”
top: “pool1”
top: “pool1_mask”
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: “conv2_1”
type: “Convolution”
bottom: “pool1”
top: “conv2_1”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv2_1_bn”
type: “BN”
bottom: “conv2_1”
top: “conv2_1”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu2_1”
type: “ReLU”
bottom: “conv2_1”
top: “conv2_1”
}
layer {
name: “conv2_2”
type: “Convolution”
bottom: “conv2_1”
top: “conv2_2”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv2_2_bn”
type: “BN”
bottom: “conv2_2”
top: “conv2_2”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu2_2”
type: “ReLU”
bottom: “conv2_2”
top: “conv2_2”
}
layer {
name: “pool2_drop”
type: “Dropout”
bottom: “conv2_2”
top: “conv2_2”
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: “pool2”
type: “Pooling”
bottom: “conv2_2”
top: “pool2”
top: “pool2_mask”
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: “conv3_1”
type: “Convolution”
bottom: “pool2”
top: “conv3_1”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv3_1_bn”
type: “BN”
bottom: “conv3_1”
top: “conv3_1”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu3_1”
type: “ReLU”
bottom: “conv3_1”
top: “conv3_1”
}
layer {
name: “conv3_2”
type: “Convolution”
bottom: “conv3_1”
top: “conv3_2”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv3_2_bn”
type: “BN”
bottom: “conv3_2”
top: “conv3_2”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu3_2”
type: “ReLU”
bottom: “conv3_2”
top: “conv3_2”
}
layer {
name: “conv3_3”
type: “Convolution”
bottom: “conv3_2”
top: “conv3_3”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv3_3_bn”
type: “BN”
bottom: “conv3_3”
top: “conv3_3”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu3_3”
type: “ReLU”
bottom: “conv3_3”
top: “conv3_3”
}
layer {
name: “pool3_drop”
type: “Dropout”
bottom: “conv3_3”
top: “conv3_3”
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: “pool3”
type: “Pooling”
bottom: “conv3_3”
top: “pool3”
top: “pool3_mask”
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: “conv4_1”
type: “Convolution”
bottom: “pool3”
top: “conv4_1”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv4_1_bn”
type: “BN”
bottom: “conv4_1”
top: “conv4_1”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu4_1”
type: “ReLU”
bottom: “conv4_1”
top: “conv4_1”
}
layer {
name: “conv4_2”
type: “Convolution”
bottom: “conv4_1”
top: “conv4_2”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv4_2_bn”
type: “BN”
bottom: “conv4_2”
top: “conv4_2”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu4_2”
type: “ReLU”
bottom: “conv4_2”
top: “conv4_2”
}
layer {
name: “conv4_3”
type: “Convolution”
bottom: “conv4_2”
top: “conv4_3”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv4_3_bn”
type: “BN”
bottom: “conv4_3”
top: “conv4_3”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu4_3”
type: “ReLU”
bottom: “conv4_3”
top: “conv4_3”
}
layer {
name: “pool4_drop”
type: “Dropout”
bottom: “conv4_3”
top: “conv4_3”
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: “pool4”
type: “Pooling”
bottom: “conv4_3”
top: “pool4”
top: “pool4_mask”
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: “conv5_1”
type: “Convolution”
bottom: “pool4”
top: “conv5_1”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv5_1_bn”
type: “BN”
bottom: “conv5_1”
top: “conv5_1”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu5_1”
type: “ReLU”
bottom: “conv5_1”
top: “conv5_1”
}
layer {
name: “conv5_2”
type: “Convolution”
bottom: “conv5_1”
top: “conv5_2”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv5_2_bn”
type: “BN”
bottom: “conv5_2”
top: “conv5_2”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu5_2”
type: “ReLU”
bottom: “conv5_2”
top: “conv5_2”
}
layer {
name: “conv5_3”
type: “Convolution”
bottom: “conv5_2”
top: “conv5_3”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv5_3_bn”
type: “BN”
bottom: “conv5_3”
top: “conv5_3”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu5_3”
type: “ReLU”
bottom: “conv5_3”
top: “conv5_3”
}
layer {
name: “pool5_drop”
type: “Dropout”
bottom: “conv5_3”
top: “conv5_3”
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: “pool5”
type: “Pooling”
bottom: “conv5_3”
top: “pool5”
top: “pool5_mask”
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: “upsample5_drop”
type: “Dropout”
bottom: “pool5”
top: “pool5”
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: “upsample5”
type: “Upsample”
bottom: “pool5”
bottom: “pool5_mask”
top: “pool5_D”
upsample_param {
scale: 2
}
}
layer {
name: “conv5_3_D”
type: “Convolution”
bottom: “pool5_D”
top: “conv5_3_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv5_3_D_bn”
type: “BN”
bottom: “conv5_3_D”
top: “conv5_3_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu5_3_D”
type: “ReLU”
bottom: “conv5_3_D”
top: “conv5_3_D”
}
layer {
name: “conv5_2_D”
type: “Convolution”
bottom: “conv5_3_D”
top: “conv5_2_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv5_2_D_bn”
type: “BN”
bottom: “conv5_2_D”
top: “conv5_2_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu5_2_D”
type: “ReLU”
bottom: “conv5_2_D”
top: “conv5_2_D”
}
layer {
name: “conv5_1_D”
type: “Convolution”
bottom: “conv5_2_D”
top: “conv5_1_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv5_1_D_bn”
type: “BN”
bottom: “conv5_1_D”
top: “conv5_1_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu5_1_D”
type: “ReLU”
bottom: “conv5_1_D”
top: “conv5_1_D”
}
layer {
name: “upsample4_drop”
type: “Dropout”
bottom: “conv5_1_D”
top: “conv5_1_D”
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: “upsample4”
type: “Upsample”
bottom: “conv5_1_D”
bottom: “pool4_mask”
top: “pool4_D”
upsample_param {
scale: 2
}
}
layer {
name: “conv4_3_D”
type: “Convolution”
bottom: “pool4_D”
top: “conv4_3_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv4_3_D_bn”
type: “BN”
bottom: “conv4_3_D”
top: “conv4_3_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu4_3_D”
type: “ReLU”
bottom: “conv4_3_D”
top: “conv4_3_D”
}
layer {
name: “conv4_2_D”
type: “Convolution”
bottom: “conv4_3_D”
top: “conv4_2_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv4_2_D_bn”
type: “BN”
bottom: “conv4_2_D”
top: “conv4_2_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu4_2_D”
type: “ReLU”
bottom: “conv4_2_D”
top: “conv4_2_D”
}
layer {
name: “conv4_1_D”
type: “Convolution”
bottom: “conv4_2_D”
top: “conv4_1_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv4_1_D_bn”
type: “BN”
bottom: “conv4_1_D”
top: “conv4_1_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu4_1_D”
type: “ReLU”
bottom: “conv4_1_D”
top: “conv4_1_D”
}
layer {
name: “upsample3_drop”
type: “Dropout”
bottom: “conv4_1_D”
top: “conv4_1_D”
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: “upsample3”
type: “Upsample”
bottom: “conv4_1_D”
bottom: “pool3_mask”
top: “pool3_D”
upsample_param {
scale: 2
}
}
layer {
name: “conv3_3_D”
type: “Convolution”
bottom: “pool3_D”
top: “conv3_3_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv3_3_D_bn”
type: “BN”
bottom: “conv3_3_D”
top: “conv3_3_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu3_3_D”
type: “ReLU”
bottom: “conv3_3_D”
top: “conv3_3_D”
}
layer {
name: “conv3_2_D”
type: “Convolution”
bottom: “conv3_3_D”
top: “conv3_2_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv3_2_D_bn”
type: “BN”
bottom: “conv3_2_D”
top: “conv3_2_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu3_2_D”
type: “ReLU”
bottom: “conv3_2_D”
top: “conv3_2_D”
}
layer {
name: “conv3_1_D”
type: “Convolution”
bottom: “conv3_2_D”
top: “conv3_1_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv3_1_D_bn”
type: “BN”
bottom: “conv3_1_D”
top: “conv3_1_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu3_1_D”
type: “ReLU”
bottom: “conv3_1_D”
top: “conv3_1_D”
}
layer {
name: “upsample2_drop”
type: “Dropout”
bottom: “conv3_1_D”
top: “conv3_1_D”
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: “upsample2”
type: “Upsample”
bottom: “conv3_1_D”
bottom: “pool2_mask”
top: “pool2_D”
upsample_param {
scale: 2
}
}
layer {
name: “conv2_2_D”
type: “Convolution”
bottom: “pool2_D”
top: “conv2_2_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv2_2_D_bn”
type: “BN”
bottom: “conv2_2_D”
top: “conv2_2_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu2_2_D”
type: “ReLU”
bottom: “conv2_2_D”
top: “conv2_2_D”
}
layer {
name: “conv2_1_D”
type: “Convolution”
bottom: “conv2_2_D”
top: “conv2_1_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv2_1_D_bn”
type: “BN”
bottom: “conv2_1_D”
top: “conv2_1_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu2_1_D”
type: “ReLU”
bottom: “conv2_1_D”
top: “conv2_1_D”
}
layer {
name: “upsample1_drop”
type: “Dropout”
bottom: “conv2_1_D”
top: “conv2_1_D”
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: “upsample1”
type: “Upsample”
bottom: “conv2_1_D”
bottom: “pool1_mask”
top: “pool1_D”
upsample_param {
scale: 2
}
}
layer {
name: “conv1_2_D”
type: “Convolution”
bottom: “pool1_D”
top: “conv1_2_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “conv1_2_D_bn”
type: “BN”
bottom: “conv1_2_D”
top: “conv1_2_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: “constant”
value: 1
}
shift_filler {
type: “constant”
value: 0
}
bn_mode: INFERENCE
}
}
layer {
name: “relu1_2_D”
type: “ReLU”
bottom: “conv1_2_D”
top: “conv1_2_D”
}
layer {
name: “conv1_1_D”
type: “Convolution”
bottom: “conv1_2_D”
top: “conv1_1_D”
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 21
pad: 1
kernel_size: 3
weight_filler {
type: “xavier”
}
bias_filler {
type: “constant”
value: 0
}
}
}
layer {
name: “prob”
type: “Softmax”
bottom: “conv1_1_D”
top: “prob”
softmax_param {
engine: CAFFE
}
}
I0927 18:20:57.228674 8404 layer_factory.hpp:77] Creating layer input
I0927 18:20:57.228780 8404 net.cpp:100] Creating Layer input
I0927 18:20:57.228811 8404 net.cpp:408] input -> data
I0927 18:20:57.288486 8404 net.cpp:150] Setting up input
I0927 18:20:57.288561 8404 net.cpp:157] Top shape: 1 3 224 224 (150528)
I0927 18:20:57.288568 8404 net.cpp:165] Memory required for data: 602112
I0927 18:20:57.288604 8404 layer_factory.hpp:77] Creating layer conv1_1
I0927 18:20:57.288666 8404 net.cpp:100] Creating Layer conv1_1
I0927 18:20:57.288682 8404 net.cpp:434] conv1_1 <- data
I0927 18:20:57.288702 8404 net.cpp:408] conv1_1 -> conv1_1
[ INFO] [1632738057.292272706]: Stereo is NOT SUPPORTED
[ INFO] [1632738057.292365300]: OpenGl version: 4.5 (GLSL 4.5).
F0927 18:20:57.649132 8404 cudnn_conv_layer.cpp:53] Check failed: status == CUDNN_STATUS_SUCCESS (4 vs. 0) CUDNN_STATUS_INTERNAL_ERROR
*** Check failure stack trace: ***
0x2bebf70 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x2bf6510 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x2bebbb0 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x2bf53d0 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
[tracking_slam_node-2] process has died [pid 8146, exit code -6, cmd /home/xx/catkin_ws/devel/lib/tracking_slam/tracking_slam_node __name:=tracking_slam_node __log:=/home/xx/.ros/log/95764e80-1f7c-11ec-9da4-887873831b6b/tracking_slam_node-2.log].
log file: /home/xx/.ros/log/95764e80-1f7c-11ec-9da4-887873831b6b/tracking_slam_node-2*.log
[ERROR] [1632738058.764194302]: PluginlibFactory: The plugin for class ‘octomap_rviz_plugin/ColorOccupancyGrid’ failed to load. Error: According to the loaded plugin descriptions the class octomap_rviz_plugin/ColorOccupancyGrid with base class type rviz::Display does not exist. Declared types are rviz/Axes rviz/Camera rviz/DepthCloud rviz/Effort rviz/FluidPressure rviz/Grid rviz/GridCells rviz/Illuminance rviz/Image rviz/InteractiveMarkers rviz/LaserScan rviz/Map rviz/Marker rviz/MarkerArray rviz/Odometry rviz/Path rviz/PointCloud rviz/PointCloud2 rviz/PointStamped rviz/Polygon rviz/Pose rviz/PoseArray rviz/PoseWithCovariance rviz/Range rviz/RelativeHumidity rviz/RobotModel rviz/TF rviz/Temperature rviz/WrenchStamped rviz_plugin_tutorials/Imu
0x2ee5400 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x335e410 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x3347900 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x335d860 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x335e160 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x2ee5400 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x33605b0 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x35a7ea0 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x35a4da0 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x35a77c0 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x35a7a80 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x33605b0 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x35add60 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x37ea190 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x37e7020 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x37e9ab0 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x37e9d70 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x35add60 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x37f0df0 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x3a2ce50 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x3a298a0 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x3a2c670 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x3a2ca70 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
0x37f0df0 void QWindowPrivate::setTopLevelScreen(QScreen*, bool) ( QScreen(0x1e41090) ): Attempt to set a screen on a child window.
QXcbConnection: XCB error: 3 (BadWindow), sequence: 61242, resource id: 27267041, major code: 40 (TranslateCoords), minor code: 0