误码率二进制相移键控 BER 8PSK附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在数字通信领域,误码率(Bit Error Rate,BER)是一个至关重要的性能指标,它衡量了在数据传输过程中由于信道噪声、干扰或设备不完善等因素导致的错误比特数量。较低的误码率意味着更高的通信可靠性和更好的传输质量。相移键控(Phase Shift Keying,PSK)作为一种广泛应用的数字调制技术,通过改变载波的相位来表示不同的数字信息。其中,二进制相移键控(Binary Phase Shift Keying,BPSK)和八相移键控(8-Phase Shift Keying,8PSK)是两种典型的多进制相移键控方式,它们在带宽效率和抗噪声性能等方面展现出不同的特性。本文将深入探讨误码率的概念,并详细分析二进制相移键控和八相移键控的原理、误码率性能及其相互关系。

误码率是评估数字通信系统性能的核心指标。在实际应用中,不同的通信场景对误码率的要求也不同。例如,在语音通信中,轻微的误码可能只会导致可接受的失真;而在数据传输、金融交易或军事通信等对数据完整性要求极高的场景中,即使是微小的误码率也可能导致严重的后果。因此,设计和优化通信系统的一个主要目标就是尽可能地降低误码率。

影响误码率的因素多种多样,主要包括:

  • 信噪比(Signal-to-Noise Ratio,SNR):

     信道中信号功率与噪声功率之比。SNR越高,信号被噪声淹没的可能性越小,误码率通常越低。

  • 调制方式:

     不同的调制方式在抗噪声能力上存在差异。

  • 编码方式:

     信道编码可以引入冗余信息,提高系统的纠错能力,从而降低误码率。

  • 信道特性:

     信道的衰落、多径效应、干扰等都会影响信号传输,导致误码。

  • 同步精度:

     接收端需要准确地进行载波同步和符号同步,否则会引入错误。

  • 接收机设计:

     接收机的滤波器、解调器和解码器的性能也会影响误码率。

二进制相移键控(BPSK)

二进制相移键控(BPSK)是最简单的相移键控方式,它利用载波相位的两个离散值来表示二进制的“0”和“1”。通常,BPSK将二进制“0”映射到载波相位为0度,将二进制“1”映射到载波相位为180度(或反之)。在理想的无噪声信道中,接收端可以完美地识别这两种相位,从而恢复出原始的二进制信息。

BPSK的信号星座图由两个点组成,分别位于实轴的正负方向上,关于原点对称。这两个点分别代表了“0”和“1”对应的相位状态。

在存在噪声的情况下,接收到的信号相位会在理想相位附近波动。接收机通过检测接收信号的相位,并与预设的门限进行比较,来判定传输的是“0”还是“1”。如果接收信号的相位更接近0度,则判定为“0”;如果更接近180度,则判定为“1”。噪声越大,接收信号相位偏离理想相位的程度越大,发生误判的可能性也就越高,从而导致误码。

BPSK的优点在于其实现简单、抗噪声能力强,适用于对误码率要求高但对带宽效率要求不高的场景。然而,BPSK每次只能传输一个比特信息,其频谱效率相对较低。

八相移键控(8PSK)

8PSK的信号星座图由位于单位圆上的八个点组成。与BPSK不同,8PSK的星座点之间距离更近。

在接收端,接收机需要根据接收信号的相位来判定传输的是哪个8PSK符号,从而恢复出对应的三比特信息。由于星座点之间距离更近,与BPSK相比,8PSK对噪声更为敏感。相同的噪声功率下,接收信号的相位更容易偏离理想相位,并误判为相邻的星座点,从而导致误码。

8PSK的误码率性能相对复杂,通常通过符号误码率(Symbol Error Rate,SER)来描述,然后转换为比特误码率(BER)。

误码率、BPSK与8PSK的权衡

误码率、BPSK和8PSK之间的关系体现了通信系统设计中的一个重要权衡:带宽效率与抗噪声性能之间的权衡。

  • 带宽效率:

     8PSK每个符号携带3个比特,因此在相同的符号速率下,8PSK的比特速率是BPSK的三倍。这意味着8PSK可以在相同的带宽下传输更多的数据,具有更高的频谱效率。这对于有限的频谱资源来说非常重要。

因此,在选择BPSK还是8PSK时,需要根据具体的应用场景和需求进行权衡。

  • 如果对误码率要求非常高,且对带宽效率要求不高,或者信道噪声较大,BPSK通常是更优的选择。

     例如,在卫星通信、深空探测等需要高可靠性传输的场景中,可能会优先考虑BPSK。

  • 如果对带宽效率要求较高,且信道噪声相对较小,或者系统可以通过其他方式(如信道编码)来提高抗噪声能力,8PSK则可能更适合。

     例如,在地面无线通信、数字电视广播等需要传输大量数据的场景中,为了节省带宽,可能会采用8PSK或更高阶的调制方式。

值得注意的是,现代通信系统通常不会单独使用简单的调制方式,而是会结合信道编码技术来提高抗噪声能力,并在接收端采用先进的均衡和信号处理算法来补偿信道失真。通过这些技术的结合,可以在一定程度上弥补高阶调制方式在抗噪声性能上的劣势,从而实现高频谱效率和较低误码率的平衡。

结论

误码率是衡量数字通信系统性能的核心指标,其高低直接反映了数据传输的可靠性。二进制相移键控(BPSK)和八相移键控(8PSK)是两种重要的相移键控调制方式,它们在频谱效率和抗噪声性能方面存在差异。BPSK具有良好的抗噪声能力但频谱效率较低,而8PSK具有较高的频谱效率但对噪声更敏感。在实际应用中,需要根据具体的通信环境、性能要求和资源限制来选择合适的调制方式,并通过结合信道编码和其他信号处理技术来优化系统的整体性能,实现低误码率和高效率的数据传输。对误码率、BPSK和8PSK的深入理解对于设计和分析现代数字通信系统至关重要。

⛳️ 运行结果

🔗 参考文献

[1] 张丽佳,忻向军,刘博,等.基于8PSK的新型高速正交光标记交换技术[J].红外与激光工程, 2010(1):4.DOI:10.3969/j.issn.1007-2276.2010.01.021.

[2] 柳雨晨,张晓磊,王拥军,等.D8PSK调制格式研究及其传输性能分析[J].红外与激光工程, 2012, 41(5):6.DOI:10.3969/j.issn.1007-2276.2012.05.028.

[3] 杜建新,许悦,滕之禹.八进制调制DWDM系统非线性效应仿真研究[J].量子电子学报, 2017, 34(6):735-741.DOI:10.3969/j.issn.1007-5461.2017.06.013.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值