Llama大模型运行的消费级硬件要求【CPU|GPU|RAM|SSD】

本文介绍了运行大型语言模型LLaMA的硬件要求,包括不同GPU如RTX3090对于不同大小模型的VRAM需求,以及CPU如Corei7-12900K和Ryzen95900X的选择。文章还讨论了模型量化对GPU内存和计算需求的影响,以及双GPU设置的适用情况。内存和存储也是关键因素,建议使用高速SSD和足够的RAM来支持模型加载和数据处理。
摘要由CSDN通过智能技术生成

大型语言模型 (LLM) 是强大的工具,可以为各种任务和领域生成自然语言文本。 最先进的LLM之一是 LLaMA(大型语言模型 Meta AI),这是由 Facebook 的研究部门 Meta AI 开发的一个包含 650 亿个参数的模型

要在家运行 LLaMA 模型,你需要一台配备强大 GPU 的计算机,能够处理推理所需的大量数据和计算。 在本文中,我们将讨论本地运行 LLaMA 的一些硬件要求。

在这里插入图片描述

推荐:用 NSDT设计器 快速搭建可编程3D场景。

在消费类硬件上运行 LLaMA 模型有多种不同的方法。 最常见的方法是使用单个 NVIDIA GeForce RTX 3090 GPU。 该 GPU 具有 24 GB 内存,足以运行 LLaMA 模型。 RTX 3090 可以运行 4 位量化的 LLaMA 30B 模型,每秒大约 4 到 10 个令牌。 24GB VRAM 似乎是在消费类台式电脑上使用单个 GPU 的最佳选择。

但是,如果你想运行更大的模型,则必须使用双 GPU 设置。 这将允许你将模型权重放入 VRAM 中。 你还可以使用高级 GPU,例如 NVIDIA A100。 这个GPU非常昂贵,但有40GB内存,可以更好地运行模型。

你还可以在 CPU 上运行 LLaMA 模型。 必须使用模型的 GGML 版本(LLaMA、Vicuna、Alpaca 和 GPT4All)以及名为 llama.cpp 的软件才能使用CPU。 运行 LLaMA 的合适 CPU 是 Core i7 12900K 和 Ryzen 9 5900X。 有关此主题的更多信息,请查看 CPU 部分。

请记住,训练或微调 LLaMA 模型需要比运行模型更多的 VRAM。 这是因为训练过程需要将模型以及训练数据存储在 VRAM 中。 训练所需的 VRAM 量取决于模型的大小和训练数据量。

为了在台式电脑上使用 LLaMA 模型,请查看需要满足的一些硬件要求:

1、运行 LLaMA 的 GPU要求

在消费级机器上运行 LLaMA 时,GPU 是最重要的计算机硬件,因为它负责运行模型所需的大部分处理。 GPU的性能将直接影响推理的速度和准确性。

模型的不同变体和实现可能需要功能较弱的硬件。 不过,GPU 仍将是系统中最重要的部分。

4 位量化 LLaMA 模型的 GPU 要求:

LLaMA ModelMinimum VRAM RequirementRecommended GPU Examples
LLaMA-7B6GBRTX 3060, GTX 1660, 2060, AMD 5700 XT, RTX 3050
LLaMA-13B10GBAMD 6900 XT, RTX 2060 12GB, 3060 12GB, 3080, A2000
LLaMA-30B20GBRTX 3080 20GB, A4500, A5000, 3090, 4090, 6000, Tesla V100, Tesla P40
LLaMA-65B40GBA100 40GB, 2x3090, 2x4090, A40, RTX A6000, 8000
  • LLama-7B

为了有效运行 LLaMA-7B,建议使用至少具有 6GB VRAM 的 GPU。 适合此模型的 GPU 示例是 RTX 3060,它提供 8GB VRAM 版本。 其他 GPU(例如 GTX 1660、2060、AMD 5700 XT 或 RTX 3050)也具有 6GB VRAM,可以作为支持 LLaMA-7B 的良好选择。

  • LLaMA-13B

为了获得 LLaMA-13B 的最佳性能,建议使用至少具有 10GB VRAM 的 GPU。 满足此要求的 GPU 示例包括 AMD 6900 XT、RTX 2060 12GB、3060 12GB、3080 或 A2000。 这些 GPU 提供必要的 VRAM 容量来有效处理 LLaMA-13B 的计算需求。

  • LLaMA-30B

为确保 LLaMA-30B 顺利运行,建议使用至少 20GB VRAM 的 GPU。 RTX 3080 20GB、A4500、A5000、3090、4090、6000 或 Tesla V100 是提供所需 VRAM 容量的 GPU 示例。 这些 GPU 可实现 LLaMA-30B 的高效处理和内存管理。

  • LLaMA-65B

LLaMA-65B 与至少具有 40GB VRAM 的 GPU 配合使用时,性能最佳。 适用于此型号的 GPU 示例包括 A100 40GB、2x3090、2x4090、A40、RTX A6000 或 8000。这些 GPU 提供充足的 VRAM 容量来处理与 LLaMA-65B 相关的密集计算任务。

每个 LLaMA 模型都有特定的 VRAM 要求,建议的 GPU 是根据其满足或超过这些要求的能力来选择的,以确保相应的 LLaMA 模型平稳高效的性能。

2、运行LLaMA 的 CPU要求

除了 GPU 之外,你还需要一个可以支持 GPU 并处理其他任务(例如数据加载和预处理)的 CPU。 基于 GPQT (GPU) 的模型对 CPU 的要求低于针对 CPU 优化的模型。

适合 LLaMA 的 CPU 是 Intel Core i9-10900K、i7-12700K 或 Ryzen 9 5900x。 但是,为了获得更好的性能,你可能需要使用更强大的 CPU,例如具有 64 核和 128 线程的 AMD Ryzen Threadripper 3990X。 最后,真正重要的是 CPU 的速度。 这才是真正的力量所在。 当在昂贵的服务器 CPU 和高端游戏 CPU 之间进行选择时,后者占据主导地位。

我们必须注意,本文讨论的模型是针对 GPU 的,但也有针对 CPU 的 LLaMa 模型优化器。 例如,GGML 是一种解决方案,可以解决处理大型模型时 GPU 内存带来的限制。 如果你更喜欢使用 CPU,建议运行 GGML 格式的模型文件。

你可以使用名为 llama.cpp(LLaMA 模型的接口)的软件来利用你的 CPU。 llama.cpp 最近的更新引入了新的增强功能,使用户能够在 CPU 和 GPU 之间分配模型的工作负载。 这不仅有利于加载更大的模型,而且还提高了令牌的速度。

这是使用 Ryzen 7 3700X 和 128GB RAM 运行 llama.cpp 的示例。

GGML ModelMemory per TokenLoad TimeSample TimePredict TimeTotal Time
LLaMA-7B 4-bit14434244 bytes1270.15 ms325.76 ms15147.15 ms/ 117.42 ms per token17077.88 ms
LLaMA-13B 4-bit22439492 bytes2946.00 ms86.11 ms7358.48 ms / 216.43 ms per token11019.28 ms
LLaMA-30B 4-bit43387780 bytes6666.53 ms332.71 ms68779.27 ms / 533.17 ms per token77333.97 ms
LLaMA-65B 4-bit70897348 bytes14010.35 ms335.09 ms140527.48 ms / 1089.36 ms per token157951.48 ms

3、运行LLaMA 的内存要求

除了GPU和CPU之外,你还需要足够的RAM(随机存取存储器)和存储空间来存储模型参数和数据。 4 位 LLaMA-30B 的最低 RAM 要求为 32 GB,可以将整个模型保存在内存中,而无需交换到磁盘。 但是,对于较大的数据集或较长的文本,你可能需要使用更多 RAM,例如 64 GB 或 128 GB。

CPU 和内存之间的带宽是一个关键因素,我想强调它的重要性。 当生成单个 token 时,整个模型需要从内存中读取一次。 假设你有 Core i9-10900X(4 通道支持)和 DDR4-3600 内存,这意味着吞吐量为 115 GB/s,而你的型号大小为 13 GB。 在这种情况下,理论限制约为每秒 8.8 个令牌,无论你的 CPU 有多快或有多少个并行核心。

RAM 的大小取决于 GGML 量化的类型和你使用的模型(LLaMA、Alpaca、Wizard、Vicuna 等)。

这些是 在CPU上使用 LLaMA 模型的内存 (RAM) 要求:

GGML ModelOriginal sizeQuantized size (4-bit)Quantized size (5-bit)Quantized size (8-bit)
7B13 GB3.9 – 7.5 GB7.5 – 8.5 GB8.5 – 10.0 GB
13B24 GB7.8 – 11 GB11.5 – 13.5 GB13.5 – 17.5 GB
30B60 GB19.5 – 23.0 GB23.5 – 27.5 GB28.5 – 38.5 GB
65B120 GB38.5 – 47.0 GB47.0 – 52.0 GB71.0 – 80.0 GB

在 CPU 上运行时基于内存 (RAM) 速度的模型 (8GB) 推理速度:

RAM speedCPUCPU channelsBandwidth*Inference
DDR4-3600Ryzen 5 3600256 GB/s7 tokens/s
DDR4-3200Ryzen 5 5600X251 GB/s6.3 tokens/s
DDR5-5600Core i9-13900K289.6 GB/s11.2 tokens/s
DDR4-2666Core i5-10400f241.6 GB/s5.1 tokens/s

速度为理论最大值,取决于操作系统和系统负载。

4、运行LLaMA的存储要求

LLaMA的最低存储要求是1TB NVMe SSD,可以存储模型文件和数据文件,读写速度很快。 但是,为了更多数据或备份目的,你可能需要使用更多存储空间,例如 2 TB 或 4 TB SSD。

选择高速存储。 选择具有出色顺序速度的 PCIe 4.0 NVMe SSD,以促进存储和系统 RAM 之间的快速数据传输。

5、模型量化如何影响 GPU 的选择?

量化 LLM使用更少的位数来存储和处理模型的权重和激活。 这使得它们的 GPU 部署更快、更高效。

4 位量化 LLM 每个权重或激活仅使用 4 位。 这意味着它们比全精度模型占用更少的内存和计算时间。 它们可以在 VRAM 容量较低的 GPU 上平稳运行。

8 位量化 LLM 每个权重或激活使用 8 位。 与全精度模型相比,这仍然减少了内存和计算成本,但不如 4 位量化那么多。 它们需要更多的 GPU 内存和计算能力才能良好运行。 它们更适合具有高 VRAM 容量和计算能力的 GPU。

总而言之,4 位量化 LLM 效率更高,并且可以在 VRAM 容量较低的 GPU 上运行。 8 位量化 LLM 的效率稍低,需要具有高 VRAM 容量和计算能力的 GPU。

|LLaMA Precision| GPU Memory Requirements

Computational DemandsSuitable GPU
Native (32-bit)Higher requirements
16-bit QuantizedModerate requirements
8-bit QuantizedRelatively higher requirements
4-bit QuantizedLower requirements

正如你所看到的,LLaMA 的精度对其 GPU 内存需求和计算需求有直接影响。 原生(32 位)LLM 需要最多的 GPU 内存和计算能力,而 4 位量化 LLM 需要最少。

适用于 LLaMA 的 GPU 取决于其精度以及您想要使用它执行的特定任务。 如果您需要在各种任务上运行大型 LLaMA,那么您将需要具有大 VRAM 容量和高计算能力的 GPU。 如果您只需要在几个特定任务上运行小型 LLaMA,那么您可以使用具有较小 VRAM 容量和较低计算能力的 GPU。

需要注意的是,随着量化级别的降低,模型的准确性也会降低。 这是因为精度降低可能会导致模型预测出现错误。

最适合你的量化级别取决于你的具体需求和要求。 如果需要一个小而高效的模型,那么你可能需要考虑使用 4 位或 8 位量化模型。 但是,如果你需要高度准确的模型,那么可能需要使用 16 位模型。

6、双GPU是否有效提升 LLaMA性能?

添加第二个 GPU 可能不会像预期那样加快文本生成速度。 瓶颈似乎阻碍了增加更多计算能力的简单解决方案。 一些测试显示出令人惊讶的结果,低端 GPU 每秒生成令牌的速度比高端 GPU 更快。 其原因尚不清楚,文本生成程序可能需要更好的优化才能很好地使用双 GPU 设置。

双 GPU 设置总共具有更多 VRAM,但每个 GPU 仍然有其自己的 VRAM 限制。 30B LLaMA 需要大约 20GB VRAM,因此两个 RTX 3090 GPU(每个都有 24GB VRAM)仍然只有 24GB VRAM 可用。 该模型应适合一个 GPU 的 VRAM 才能正常运行。

但是,如果模型太大而无法容纳单个 GPU 的 VRAM 并且需要利用系统 RAM,则使用多个 GPU 确实可以加快该过程。 在这种情况下,每个 GPU 可以处理模型的一部分,并且计算负载在它们之间分配。 这种并行化可以提高超过单个 GPU 的 VRAM 容量的大型模型的速度。

因此,在处理具有高 VRAM 要求的大型模型时,通常会采用多个 GPU。 它可以有效利用资源并加速训练或推理过程。

将像 65B LLaMA 这样的大型语言模型拆分到具有模型并行性的多个 GPU 上可能会很困难,并且可能会导致通信延迟。 通过 GPU 拆分和同步模型的参数和计算需要仔细编码,并且可能并不总是能大幅提高性能。

双 GPU 设置可能不适用于某些软件。 某些机器学习框架或库可能无法完全使用多个 GPU,并且可能需要额外的工作来设置和优化系统以使用双 GPU。

这些限制意味着,将双 GPU 设置用于 30B LLaMA 的可能优势与难度和潜在问题进行比较非常重要。 有时,获得更强的单GPU或尝试其他优化方法可能是更好的方法。

7、为 LLaMA 选择 PC 硬件的技巧

  • 围绕 GPU 构建

创建一个包含主板、CPU 和 RAM 的平台。 GPU 处理训练和推理,而 CPU、RAM 和存储管理数据加载。 选择支持 PCIe 4.0(或 5.0)、多个 NVMe 驱动器插槽、x16 GPU 插槽和充足内存 DIMM 的主板。 建议使用单线程速度较高的 CPU,例如 Ryzen 5000 或 Intel 第 12/13 代。

  • 型号选择和 VRAM

为了在响应质量方面获得最佳性能,建议在具有至少 20GB VRAM 的 GPU 上运行 8 位 13B 模型或 4 位 30B 模型。 两种型号都提供相似的质量响应,VRAM 可用性应该是决定因素。 投资具有张量核心的 Nvidia GPU 以增强性能。 考虑 RTX 30 系列或 RTX 40 系列等选项,例如 RTX 3090 24GB、RTX 4090 24GB,以获得最佳性能。

  • 速度比较

就每秒生成的令牌而言,13B 模型通常比 30B 模型运行得更快。 虽然确切的速度差异可能有所不同,但与 30B 模型相比,13B 模型往往会在生成速度方面提供显着的改进。

  • 内存要求

目标是至少 1.5 倍 VRAM 容量或两倍 VRAM 以获得最佳性能。 当使用 128GB 或更多 RAM 时,主板和 CPU 的选择变得至关重要。

  • PCIe 4.0 NVMe 固态硬盘

高顺序速度 PCIe 4.0 NVMe SSD 的重要性主要在于将初始模型加载到 VRAM 中。 模型加载后,SSD 对生成速度(令牌/秒)的影响很小。

  • 足够的常规 RAM

拥有足够的常规 RAM(最好是 VRAM 容量的两倍)对于初始模型加载至关重要。 模型一旦加载,对实际生成速度的影响是有限的。 确保初始加载期间有足够的常规 RAM 对于流畅的体验至关重要。

  • CPU单线程速度

CPU 的单线程速度主要对于初始模型加载非常重要,而不是在生成期间运行模型。 CPU的作用在数据预处理、模型加载和其他不依赖GPU的操作等任务中更加突出。

  • 扩展以提高速度

如果你需要将文本生成速度从 15 个令牌/秒提高到 30 个令牌/秒,设置整个 PC 的文字克隆可能比添加第二个 3090 卡更有效。 将整体系统资源(包括 CPU 和 RAM)加倍可能会在提高文本生成速度方面产生更好的结果。

  • 单GPU性能

由于 GPU 本身的内部带宽优势,单个 GPU 通常比多 GPU 设置提供更快的性能。

  • 电源及机箱

投资具有足够容量为所有组件供电的高质量电源。 选择通风良好的宽敞机箱以获得最佳散热效果。

  • DDR5 和未来平台

虽然 DDR5 和 Zen 4 或 AM5 等未来平台具有优势,但稳定性和兼容性可能会有所不同。 考虑投资具有良好 PCIe 插槽布局和内存支持的高端主板,以实现未来的升级。

请记住,虽然这些提示和技巧提供了基于经验的见解,但各个系统配置和性能可能会有所不同。 始终建议对不同的设置进行试验和基准测试,以找到最适合你的特定需求的解决方案。


原文链接:Llama消费级硬件要求 — BimAnt

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值