### 3D 扩散模型中的滑动窗口推理实现
在处理大规模三维数据时,由于计算资源的限制以及内存容量的影响,通常无法一次性加载整个场景的数据进行推理。因此,在许多实际应用场景中会采用 **滑动窗口技术** 来分块处理输入数据并逐步完成推断过程。
#### 滑动窗口的核心概念
滑动窗口方法通过将大尺寸的空间划分为多个较小区域来降低单次运算的需求量级。这种方法不仅适用于二维图像领域,也广泛应用于三维空间建模任务之中[^1]。具体而言:
- 输入的大规模体素网格或者点云会被分割成若干子集。
- 对于每一个局部的小范围数据执行独立预测操作后再将其拼接回原始坐标系下形成最终结果。
这种策略能够有效缓解显存占用过高问题的同时保持较高的精度水平。然而需要注意的是,如果边界条件设置不当可能会引入伪影现象影响视觉效果质量[^2]。
以下是基于PyTorch框架的一个简单示例代码片段展示如何利用sliding-window机制来进行inference:
```python
import torch
from torch import nn
class SlidingWindowInference(nn.Module):
def __init__(self, model, patch_size=(64, 64, 64), stride=None):
super(SlidingWindowInference, self).__init__()
self.model = model.eval()
self.patch_size = patch_size
if not stride:
self.stride = tuple(p//2 for p in patch_size)
else:
assert isinstance(stride,tuple),"Stride must be defined as a tuple"
self.stride=stride
@torch.no_grad()
def forward(self,x):
B,C,D,H,W=x.shape
output=torch.zeros_like(x,dtype=float).cuda()
count_map=torch.zeros((B,*output.shape[-3:]),dtype=int).cuda()
z_patches=D//self.stride[0]+(1 if D%self.stride[0]!=0 else 0)
y_patches=H//self.stride[1]+(1 if H%self.stride[1]!=0 else 0 )
x_patches=W//self.stride[2]+(1 if W%self.stride[2]!=0 else 0 )
for dz in range(z_patches):
start_z=dz*self.stride[0]
end_z=min(start_z+self.patch_size[0],D)
pad_z_start=max(0,(start_z+self.patch_size[0]-end_z))
for dy in range(y_patches):
start_y=dy*self.stride[1]
end_y=min(start_y+self.patch_size[1],H)
pad_y_start=max(0,(start_y+self.patch_size[1]-end_y))
for dx in range(x_patches):
start_x=dx*self.stride[2]
end_x=min(start_x+self.patch_size[2],W)
pad_x_start=max(0,(start_x+self.patch_size[2]-end_x))
current_patch=x[...,start_z:end_z,start_y:end_y,start_x:end_x]
padded_patch=nn.functional.pad(current_patch,(pad_x_start,0,pad_y_start,0,pad_z_start,0)).unsqueeze(dim=-1)
pred=self.model(padded_patch.squeeze(-1))[...,pad_z_start:,pad_y_start:,pad_x_start:]
output[...,start_z:end_z,start_y:end_y,start_x:end_x]+=pred
count_map[...,start_z:end_z,start_y:end_y,start_x:end_x]+=1
averaged_output=output/(count_map.unsqueeze(1)+1e-8)
return averaged_output
```
上述代码定义了一个`SlidingWindowInference`类用于管理滑窗逻辑,并调用了预训练好的扩散网络实例作为内部组件完成逐patch预测工作流。注意这里为了简化演示忽略了可能存在的batch normalization层冻结状态调整细节等问题[^3]。