深入理解3D扩散生成式模型

本文解析了3D扩散模型如DreamFusion和Zero-1-to-3在将文本和图像转化为3D模型中的应用,介绍了扩散模型的基本原理,以及如何结合NeRF技术从图像生成3D模型的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Stable Dreamfusion 上的这个存储库启发了这个博客。

我认为 3D 扩散和 3D 生成似乎是每个人心中的下一件大事。 Stability AI 开始招聘才华横溢的 3D AI 工程师,谷歌和学术界每天似乎都在进行令人印象深刻的即时 3D 模型生成器研究。 然而,虽然我对这些模型的工作原理有一个模糊的了解,但我绝对没有具体的理解。

所以,这篇博客的目标是理解以下两篇论文

现在,让我们从 DreamFusion 开始。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - 

### 3D 扩散模型中的滑动窗口推理实现 在处理大规模三维数据时,由于计算资源的限制以及内存容量的影响,通常无法一次性加载整个场景的数据进行推理。因此,在许多实际应用场景中会采用 **滑动窗口技术** 来分块处理输入数据并逐步完成推断过程。 #### 滑动窗口的核心概念 滑动窗口方法通过将大尺寸的空间划分为多个较小区域来降低单次运算的需求量级。这种方法不仅适用于二维图像领域,也广泛应用于三维空间建模任务之中[^1]。具体而言: - 输入的大规模体素网格或者点云会被分割成若干子集。 - 对于每一个局部的小范围数据执行独立预测操作后再将其拼接回原始坐标系下形成最终结果。 这种策略能够有效缓解显存占用过高问题的同时保持较高的精度水平。然而需要注意的是,如果边界条件设置不当可能会引入伪影现象影响视觉效果质量[^2]。 以下是基于PyTorch框架的一个简单示例代码片段展示如何利用sliding-window机制来进行inference: ```python import torch from torch import nn class SlidingWindowInference(nn.Module): def __init__(self, model, patch_size=(64, 64, 64), stride=None): super(SlidingWindowInference, self).__init__() self.model = model.eval() self.patch_size = patch_size if not stride: self.stride = tuple(p//2 for p in patch_size) else: assert isinstance(stride,tuple),"Stride must be defined as a tuple" self.stride=stride @torch.no_grad() def forward(self,x): B,C,D,H,W=x.shape output=torch.zeros_like(x,dtype=float).cuda() count_map=torch.zeros((B,*output.shape[-3:]),dtype=int).cuda() z_patches=D//self.stride[0]+(1 if D%self.stride[0]!=0 else 0) y_patches=H//self.stride[1]+(1 if H%self.stride[1]!=0 else 0 ) x_patches=W//self.stride[2]+(1 if W%self.stride[2]!=0 else 0 ) for dz in range(z_patches): start_z=dz*self.stride[0] end_z=min(start_z+self.patch_size[0],D) pad_z_start=max(0,(start_z+self.patch_size[0]-end_z)) for dy in range(y_patches): start_y=dy*self.stride[1] end_y=min(start_y+self.patch_size[1],H) pad_y_start=max(0,(start_y+self.patch_size[1]-end_y)) for dx in range(x_patches): start_x=dx*self.stride[2] end_x=min(start_x+self.patch_size[2],W) pad_x_start=max(0,(start_x+self.patch_size[2]-end_x)) current_patch=x[...,start_z:end_z,start_y:end_y,start_x:end_x] padded_patch=nn.functional.pad(current_patch,(pad_x_start,0,pad_y_start,0,pad_z_start,0)).unsqueeze(dim=-1) pred=self.model(padded_patch.squeeze(-1))[...,pad_z_start:,pad_y_start:,pad_x_start:] output[...,start_z:end_z,start_y:end_y,start_x:end_x]+=pred count_map[...,start_z:end_z,start_y:end_y,start_x:end_x]+=1 averaged_output=output/(count_map.unsqueeze(1)+1e-8) return averaged_output ``` 上述代码定义了一个`SlidingWindowInference`类用于管理滑窗逻辑,并调用了预训练好的扩散网络实例作为内部组件完成逐patch预测工作流。注意这里为了简化演示忽略了可能存在的batch normalization层冻结状态调整细节等问题[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值