方法来自于《计算机视觉中的多视角几何》P54页
方法
两点为
A
\bm{A}
A、
B
\bm{B}
B,齐次坐标系为
A
=
[
x
1
,
y
1
,
z
1
,
1
]
T
\bm{A}=[x_1,y_1,z_1,1]^T
A=[x1,y1,z1,1]T、
B
=
[
x
2
,
y
2
,
z
2
,
1
]
T
\bm{B}=[x_2,y_2,z_2,1]^T
B=[x2,y2,z2,1]T。
平面为
π
\bm{\pi}
π,齐次表示为
π
=
[
π
1
,
π
2
,
π
3
,
π
4
]
T
\bm{\pi}=[\pi_1,\pi_2,\pi_3,\pi_4]^T
π=[π1,π2,π3,π4]T。
两点
A
\bm{A}
A、
B
\bm{B}
B所在的直线,用
P
l
u
c
k
e
r
\bm{Plucker}
Plucker矩阵表示为:
L
=
A
B
T
−
B
A
T
(1)
\bm{L}=\bm{A}\bm{B}^T-\bm{B}\bm{A}^T \tag{1}
L=ABT−BAT(1)
直线
L
\bm{L}
L和平面
π
\bm{\pi}
π 确定的交点是:
X
=
L
π
(2)
\bm{X}=\bm{L\pi} \tag{2}
X=Lπ(2)
并且
L
π
=
0
\bm{L\pi}=\bm{0}
Lπ=0当且仅当
L
\bm{L}
L在
π
\bm{\pi}
π上。
证明
1)证明点
X
\bm{X}
X在面
π
\bm{\pi}
π上:
π
T
X
=
π
T
L
π
=
0
(3)
\bm{\pi}^T\bm{X}=\bm{\pi}^T\bm{ L\pi}=\bm{0} \tag{3}
πTX=πTLπ=0(3)
等于
0
\bm{0}
0,原因来自于
L
\bm{L}
L为反对称矩阵,说明点
X
\bm{X}
X在面
π
\bm{\pi}
π上。
2)证明
X
\bm{X}
X在
A
\bm{A}
A、
B
\bm{B}
B相连的直线上:
[
A
T
B
T
X
T
]
⇒
[
A
T
B
T
π
T
L
]
⇒
[
A
T
B
T
π
T
A
B
T
−
π
T
B
A
T
]
⇒
[
A
T
B
T
0
]
(4)
\begin{bmatrix} \bm{A}^T\\ \bm{B}^T \\ \bm{X}^T \end{bmatrix} \Rightarrow \begin{bmatrix} \bm{A}^T\\ \bm{B}^T \\ \bm{\pi}^T \bm{L} \end{bmatrix} \Rightarrow \begin{bmatrix} \bm{A}^T\\ \bm{B}^T \\ \bm{\pi}^T\bm{AB}^T-\bm{\pi}^T\bm{BA}^T \end{bmatrix} \Rightarrow \begin{bmatrix} \bm{A}^T\\ \bm{B}^T \\ \bm{0} \end{bmatrix} \tag{4}
⎣⎡ATBTXT⎦⎤⇒⎣⎡ATBTπTL⎦⎤⇒⎣⎡ATBTπTABT−πTBAT⎦⎤⇒⎣⎡ATBT0⎦⎤(4)
于是
X
X
X与
A
A
A、
B
B
B线性相关,
X
X
X在
A
A
A、
B
B
B相连的直线上。
所以
X
X
X为点
A
A
A、
B
B
B相连的直线与面
π
\pi
π的交点。
证毕。