空间中两点连线与平面的交点

方法来自于《计算机视觉中的多视角几何》P54页

方法

两点为 A \bm{A} A B \bm{B} B,齐次坐标系为 A = [ x 1 , y 1 , z 1 , 1 ] T \bm{A}=[x_1,y_1,z_1,1]^T A=[x1,y1,z1,1]T B = [ x 2 , y 2 , z 2 , 1 ] T \bm{B}=[x_2,y_2,z_2,1]^T B=[x2,y2,z2,1]T
平面为 π \bm{\pi} π,齐次表示为 π = [ π 1 , π 2 , π 3 , π 4 ] T \bm{\pi}=[\pi_1,\pi_2,\pi_3,\pi_4]^T π=[π1,π2,π3,π4]T

两点 A \bm{A} A B \bm{B} B所在的直线,用 P l u c k e r \bm{Plucker} Plucker矩阵表示为:
L = A B T − B A T (1) \bm{L}=\bm{A}\bm{B}^T-\bm{B}\bm{A}^T \tag{1} L=ABTBAT(1)
直线 L \bm{L} L和平面 π \bm{\pi} π 确定的交点是:
X = L π (2) \bm{X}=\bm{L\pi} \tag{2} X=Lπ(2)
并且 L π = 0 \bm{L\pi}=\bm{0} Lπ=0当且仅当 L \bm{L} L π \bm{\pi} π上。

证明

1)证明点 X \bm{X} X在面 π \bm{\pi} π上:
π T X = π T L π = 0 (3) \bm{\pi}^T\bm{X}=\bm{\pi}^T\bm{ L\pi}=\bm{0} \tag{3} πTX=πTLπ=0(3)
等于 0 \bm{0} 0,原因来自于 L \bm{L} L为反对称矩阵,说明点 X \bm{X} X在面 π \bm{\pi} π上。

2)证明 X \bm{X} X A \bm{A} A B \bm{B} B相连的直线上:
[ A T B T X T ] ⇒ [ A T B T π T L ] ⇒ [ A T B T π T A B T − π T B A T ] ⇒ [ A T B T 0 ] (4) \begin{bmatrix} \bm{A}^T\\ \bm{B}^T \\ \bm{X}^T \end{bmatrix} \Rightarrow \begin{bmatrix} \bm{A}^T\\ \bm{B}^T \\ \bm{\pi}^T \bm{L} \end{bmatrix} \Rightarrow \begin{bmatrix} \bm{A}^T\\ \bm{B}^T \\ \bm{\pi}^T\bm{AB}^T-\bm{\pi}^T\bm{BA}^T \end{bmatrix} \Rightarrow \begin{bmatrix} \bm{A}^T\\ \bm{B}^T \\ \bm{0} \end{bmatrix} \tag{4} ATBTXTATBTπTLATBTπTABTπTBATATBT0(4)
于是 X X X A A A B B B线性相关, X X X A A A B B B相连的直线上。
所以 X X X为点 A A A B B B相连的直线与面 π \pi π的交点。
证毕。

计算几何算法(含源代码) ㈠ 点的基本运算 1. 平面两点之间距离 1 2. 判断两点是否重合 1 3. 矢量叉乘 1 4. 矢量点乘 2 5. 判断点是否在线段上 2 6. 求一点饶某点旋转后的坐标 2 7. 求矢量夹角 2 ㈡ 线段及直线的基本运算 1. 点线段的关系 3 2. 求点到线段所在直线垂线的垂足 4 3. 点到线段的最近点 4 4. 点到线段所在直线的距离 4 5. 点到折线集的最近距离 4 6. 判断圆是否在多边形内 5 7. 求矢量夹角余弦 5 8. 求线段之间的夹角 5 9. 判断线段是否相交 6 10.判断线段是否相交但不交在端点处 6 11.求线段所在直线的方程 6 12.求直线的斜率 7 13.求直线的倾斜角 7 14.求点关于某直线的对称点 7 15.判断两条直线是否相交及求直线交点 7 16.判断线段是否相交,如果相交返回交点 7 ㈢ 多边形常用算法模块 1. 判断多边形是否简单多边形 8 2. 检查多边形顶点的凸凹性 9 3. 判断多边形是否凸多边形 9 4. 求多边形积 9 5. 判断多边形顶点的排列方向,方法一 10 6. 判断多边形顶点的排列方向,方法二 10 7. 射线法判断点是否在多边形内 10 8. 判断点是否在凸多边形内 11 9. 寻找点集的graham算法 12 10.寻找点集凸包的卷包裹法 13 11.判断线段是否在多边形内 14 12.求简单多边形的重心 15 13.求凸多边形的重心 17 14.求肯定在给定多边形内的一个点 17 15.求从多边形外一点出发到该多边形的切线 18 16.判断多边形的核是否存在 19 ㈣ 圆的基本运算 1 .点是否在圆内 20 2 .求不共线的三点所确定的圆 21 ㈤ 矩形的基本运算 1.已知矩形三点坐标,求第4点坐标 22 ㈥ 常用算法的描述 22 ㈦ 补充 1.两圆关系: 24 2.判断圆是否在矩形内: 24 3.点到平面的距离: 25 4.点是否在直线同侧: 25 5.镜反射线: 25 6.矩形包含: 26 7.两圆交点: 27 8.两圆公共积: 28 9. 圆和直线关系: 29 10. 内切圆: 30 11. 求切点: 31 12. 线段的左右旋: 31 13.公式: 32
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值