文章目录
- 什么是人工智能(Artificial Intelligence,AI)? —— 关系:AI >> ML >> DL
- 一、机器学习(Machine Learning,ML)
- 二、深度学习(Deep Learning,ML)
- 备注:PyTorch vs TensorFlow
- 备注:杭州六小龙 —— 游戏科学、深度求索、宇树科技、云深处科技、强脑科技和群核科技
什么是人工智能(Artificial Intelligence,AI)? —— 关系:AI >> ML >> DL
一、机器学习(Machine Learning,ML)
1、历史
2、类型
机器学习有哪四种类型?
需要了解的 4 种机器学习类型
监督学习与无监督学习:有什么区别?
(1)监督学习(Supervised Learning)
① 分类(Classification):K 最近邻 (KNN)、朴素贝叶斯分类器算法、支持向量机 (SVM)算法、决策树和随机森林模型
② 回归(Regression):线性回归、逻辑回归、岭回归和套索回归
(2)无监督学习(Unsupervised Learning)
① 聚类(Clustering):层次聚类和K 均值聚类
② 降维(Feature reduction):主成分分析(PCA)、非负矩阵分解(NMF)、线性判别分析(LDA)和广义判别分析(GDA)
(3)半监督学习(Semi-supervised learning)
(4)强化学习(Reinforcement Learning):Q学习、深度强化学习
二、深度学习(Deep Learning,ML)
1、自然语言处理(Natural Language Processing ,NLP)
2、卷积神经网络(Convolutional Neural Networks,CNN)
(1)神经网络原理:神经元、神经元权重、前向传播、激活函数、反向传播、成本函数和梯度下降
(2)卷积神经网络:卷积层、池化层、全连接层
(3)深度卷积神经网络:卷积层、池化层、全连接层、Dropout 层、激活函数层
深度卷积神经网络(DCNN)详解 —— 卷积层、池化层、全连接层、Dropout 层、激活函数层
(4)应用
① 计算机视觉
② 自动驾驶汽车
③ 物联网(The Internet of Things,IoT)
- 物联网(英文:Internet of Things,缩写:IoT)起源于传媒领域,是信息科技产业的第三次革命。物联网是指通过信息传感设备,按约定的协议,将任何物体与网络相连接,物体通过信息传播媒介进行信息交换和通信,以实现智能化识别、定位、跟踪、监管等功能。
- 什么是物联网?
④ 生成式AI( (Generative AI) ):ChatGPT、DeepSeek
⑤ 具身智能(Embodied Intelligence):宇树科技
机器人:具身机器人、聊天机器人、协作机器人、工业机器人、医疗机器人、农业机器人、微型机器人、增强机器人
机器人技术:什么是机器人? —— 主要部件、类型、利与弊、历史与未来
什么是机器人流程自动化 (RPA)?
⑥ 智能体(Agent):Manus实用性智能助手
Manus是一种集成多模态理解、任务规划与执行、个性化交互于一体的通用型人工智能助手(General-purpose AI Assistant)。其目标是模拟或超越人类助手在日常、工作、学习等多场景下的响应能力与执行效率,提供泛场景、持续性、高适应性的智能支持。
Manus典型能力主要涵盖以下几个方面:
- 自然语言理解与生成:具备强大的文本解析和生成能力,能够精准理解用户意图,生成上下文一致、逻辑严密的自然语言回应。
- 多模态处理:支持图像、语音、文本等多模态信息的输入与协同处理,可进行图文理解、语音交互、图像识别等复合任务。
- 自主任务规划与执行:能根据用户指令进行任务分解、步骤规划,并结合API、外部工具自动化执行。
- 个性化与上下文记忆:支持长周期会话、用户偏好记忆与个性化响应,能根据上下文持续优化交互效果。
- 插件系统与可拓展性:通过插件化架构连接第三方服务,实现对浏览器、文档、代码、工具平台等的原生操作能力。
智能体(Manus)与生成式AI(ChatGPT)的区别
对比项 | Manus(通用型AI助手) | ChatGPT / DeepSeek(基础大模型) |
---|---|---|
核心角色 | 实用型智能助手(Agent) | 通用知识与语言建模器 |
使用目标 | 实现任务执行与问题解决 | 提供通用的语言理解与生成能力 |
用户视角 | 像“数字助理”或“虚拟秘书” | 像“高级搜索引擎”或“对话百科” |
功能导向 | 面向执行(Do) | 面向生成(Say) |
Manus以「执行任务」为核心,例如:订票、处理表格、调用系统命令。而ChatGPT或DeepSeek的底层模型则更专注于理解语言、生成文本,虽然也能辅助任务,但通常缺少执行环境与自治机制。
⑦ 可穿戴医疗设备
备注:PyTorch vs TensorFlow
PyTorch 与 TensorFlow:深度学习的关键区别